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ABSTRACT 

 
In order for simulation based training to help prepare warfighters for modern asymmetric tactics, opponent models 
of behavior must become more dynamic and challenge trainees with adaptive threats consistent with those 
increasingly encountered by the military. In this paper we describe an adaptive behavior modeling framework 
designed to represent asymmetric adversaries within a multi-player virtual environment. The framework aims to 
provide a means for adversary models to analyze the tactical situation during execution, and adapt their behaviors 
and tactics accordingly.  Dynamic adaptations occur both within an exercise and across exercise runs, with an 
automated means to carry “lessons learned” forward from one exercise to the next and adapt tactics in subsequent 
training sessions. This paper provides details on two distinct areas of investigation. The first area is a survey of the 
space of asymmetric tactics and adaptations from real-world military operations, initially focusing on urban 
“presence patrols”. A number of training experiments were conducted in a virtual environment to solidify the 
behavior modeling requirements for this specific operational area, and provide a basis for generalizing to other 
domains. The second research area is the design and development of artificial intelligence techniques for creating 
adaptive adversaries. The approach makes use of an authoring tool for defining adaptive behavior models specified 
as partial plans that can be instantiated with choices partly driven by reward functions using data from previous 
events. Based on this initial behavior specification, new adaptive behaviors can be automatically generated with 
methods based on evolutionary algorithms. In both cases, the adversary model adapts over time in conjunction with 
training events. 
 
 

ABOUT THE AUTHORS 

 
Randy Jensen is a group manager at Stottler Henke Associates, Inc., working in training systems since 1993. He 
has developed numerous Intelligent Tutoring Systems for Stottler Henke, as well as authoring tools, simulation 
controls, after action review tools, and assessment logic routines. He is currently leading projects to develop 
automated after action review for Marine Corps combined arms training, a framework for ITS interoperability with 
distributed learning architectures for the Joint ADL Co-Lab, and an authoring tool for virtual training 
demonstrations for the Army. He holds a B.S. with honors in symbolic systems from Stanford University. 
 
Jeremy Ludwig joined Stottler Henke in the fall of 2000 after completing his Master's Degree in Computer Science 
at the University of Pittsburgh with a concentration in Intelligent Systems. His research areas include behavior 
modeling, machine learning, and intelligent training systems. 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8254 Page 2 of 11 

 
Michael Proctor, LTC (Retired), Ph.D. IE, CMSP, currently is an Associate Professor with the University of 
Central Florida Industrial Engineering and Management Systems Department as well as with the UCF 
Interdisciplinary Modeling and Simulation program.   His research interests include games for training, Interactive 
Simulation, Real-Time Simulation Agents, and Simulation-Based Life-Cycle Engineering.   
 
Maj Jon Patrick is a Major in the United States Army Acquisition Corps and has completed his Master’s Degree in 
Interactive Simulations and Training Systems at the University of Central Florida thru the Advanced Civil 
Schooling Program. 
 
Wyatt Wong joined Forterra Systems in the fall of 2005 with over 8 years experience in design, engineering, and 
support of mission critical systems. Wyatt's previous experiences include areas of finance, networking, and database 
infrastructures. Wyatt holds a Bachelor of Applied Science in Electrical Engineering from Queen's University in 
Canada, as well as an MBA from the Leavey School of Business. Currently, Wyatt is focused on UI and HCI design 
and engineering at Forterra Systems. 
 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8254 Page 3 of 11 

Adaptive Behavior Models for Asymmetric Adversaries 
 

Jeremy Ludwig, Randy Jensen 
Stottler Henke Associates, Inc. 

San Mateo, CA 
Ludwig@stottlerhenke.com,  
Jensen@stottlerhenke.com 

Michael Proctor, Jon Patrick 

University of Central Florida 
Orlando, FL 

Mproctor@ucf.edu, Jonathan.patrick@us.army.mil 
 

Wyatt Wong 
Forterra Systems 
San Mateo, CA 

Wwong@forterrainc.com 
 

INTRODUCTION 

In order for simulation based training to help prepare 
warfighters for modern asymmetric tactics, opponent 
models of behavior must become more dynamic and 
challenge trainees with adaptive threats consistent with 
those increasingly encountered by the military. In this 
paper we describe an adaptive behavior modeling 
framework designed to represent asymmetric 
adversaries within a multi-player virtual environment. 
The framework aims to provide a means for adversary 
models to analyze the tactical situation during 
execution, and adapt their behaviors and tactics 
accordingly.  Dynamic adaptations occur both within 
an exercise and across exercise runs, with an 
automated means to carry “lessons learned” forward 
from one exercise to the next and adapt tactics in 
subsequent training sessions.  
 
This paper provides details on two distinct areas of 
investigation.  The first area is a survey of the space of 
asymmetric tactics and adaptations from real-world 
military operations, to generate a set of reference 
scenarios. A number of training experiments were 
conducted in a virtual environment to solidify the 
behavior modeling requirements for this specific 
operational area, and provide a basis for generalizing 
to other domains. The second research area is the 
design and development of machine learning 
techniques for creating adaptive adversaries. The 
approach makes use of an authoring tool for defining 
adaptive behavior models specified as partial plans that 
can adapt over time in conjunction with training 
events. This approach focuses on both supporting a 
natural method of encoding existing domain 
knowledge and the rapid adaptation of encoded 
behaviors.  The overall objective for this approach is 
that the adversary behavior models should constantly 
challenge, and occasionally surprise, the human 
trainees to help them learn to be more proactive in 
recognizing asymmetric threats. 
 

BACKGROUND 

The training challenge is to provide the training 
audience with practice against an enemy who changes 
tactics in unpredictable or devious ways, often times 
specifically in response to observed patterns.  
Classroom lecture environments are typically not a 
very effective option for this training challenge, having 
been shown to have less than a 10% retention rate 
(Wiggins, 1997).  While field training exercises are 
widely regarded as effective, they are costly and 
require availability of training areas and supporting 
infrastructure to include additional personnel to “play” 
the threat.  Virtual simulations have typically been 
shown to be efficient and effective replacement for live 
training exercises. However, a significant limitation of 
current threat simulation models is their lack of 
dynamic asymmetric opponent behaviors reflecting 
recent and current adversary tactics and methods.  
Lacking such an opponent, training scenarios may 
initially create a strong positive training effect but with 
repeated training exercises the opponents’ behavior 
becomes predictable and results in rapidly diminished 
returns on additional training. 
 
To counter the diminishing returns of simulation-based 
training, opponent models of behavior must become 
more dynamic and contemporary.  Contemporary 
opponent models of behavior must use asymmetric 
tactics, must dynamically adjust their tactics, and must 
generate alternative behaviors that are consistent with 
their perspective on warfare. 
 
In order to provide training that exposes trainees to this 
kind of dynamic threat environment and the kinds of 
decision making they must employ in their own tactics 
against a thinking and reactive enemy, scripted 
adversary behaviors inherently cannot provide 
sufficient complexity to test weaknesses in the 
trainee’s tactics.  This is the motivation for the 
development of a system that can generate adaptive 
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adversary behaviors for execution in simulation based 
training. 

TRAINING SCENARIO DEVELOPMENT 

A key part of this research in laying the groundwork 
for the application of an adaptive behavior approach 
was to consider specific requirements for likely 
scenarios that would be used as an instrument of a 
training methodology.  In pursuit of this goal, we 
developed a sample set of training scenario instances 
with a sequence of changing adversary tactics, in order 
to address the overall requirement for adaptive and 
asymmetric nature of insurgent tactics.   
 
Scenario Design Objectives 
 
The scenario content was developed to properly 
capture the common tactics, techniques, and 
procedures (TTPs) of insurgent behavior in current 
operational settings around the world.  It was important 
that these TTPs not be country specific.  We were 
aiming for a sequence of events that demonstrated 
adaptive insurgent tactics that consider previous 
successes or failures in the process of generating a 
response. We also were conscious of the 
counterbalancing effect of the simultaneous goals of 
realism and tractable modeling challenges.  On the one 
hand, realism is a critical component of any training, 
and even more so when the goal is to familiarize the 
training audience with the kinds of tactical adaptations 
that are the hallmark of asymmetric warfare.  On the 
other hand, full realism ultimately presents an 
intractable technical challenge, as the goal of modeling 
a complete range of possible human actions, reactions, 
and tactical adaptations would require a complete 
model of human cognition.  For example the use of 
videotape recorder timers to trigger improvised 
explosive devices (IEDs) is an element of a tactic that 
cannot be generated by a system that has no model of 
such artifacts and their associated properties in its 
virtual world.  The middle ground is a space where 
scenarios based on real world insurgent tactics can be 
eminently realistic.   
 
We believe that a dynamic behavior adaptation model 
that implements a mechanism for deciding among 
choice points linked to these scenarios can therefore be 
successful in accomplishing the training goal of 
experience against such changing tactics.  It is also 
possible to introduce unpredictability in such a 
framework, as an explicit factor in how choice points, 
and therefore tactics, are selected by the adversary 
models and performed.  Factors driving unpredictable 

choices are taken in tandem with evidence of previous 
outcomes.  
 
Another influence on scenario design involved 
consideration of the likely training objectives in a use 
case where such a scenario would be employed.  The 
process of constructing a scenario ultimately involves 
the combination of underlying tactics applied in the 
scenario with the detailed set of events that may take 
place in either a linear or possibly branching manner.  
The level of granularity of the events within the 
scenario ideally should match the level at which the 
training audience is performing decision making, such 
that events that do not contribute to measurements of 
performance tied to intended training objectives can be 
abstracted out of the overall scenario event list.  For 
example, if the training objectives concern identifying 
enemy tactics and deciding on proper counter-tactics, 
and if the training objectives do not involve the details 
of operational procedures that factor into counter-
tactics, then these elements of the training experience 
can be simplified.  As a result, the aim in our scenario 
development process was to focus on events which 
create the conditions where the training audience must 
make key decisions about the possible enemy tactics 
being employed. Finally, we were looking for 
scenarios with the potential to demonstrate the use of 
cultural assumptions and differences, as these 
increasingly play a role in asymmetric warfare.  
Through our literature review and consultations, over 
100 documented attacks were analyzed to gain a better 
understanding of the trends and peculiarities involved.    
 
Scenario Structure 
 
Twenty-six scenario permutations were developed out 
of an underlying “presence patrol” scenario.  To design 
and build these scenario permutations, the team 
reviewed current literature and training materials, as 
well as the expertise of four active duty officers who 
had recent experience from Iraq, Afghanistan, and 
Kosovo.  Developing multiple scenarios from 
documented real world instances serves to illustrate the 
adaptive behavior of the adversary faced by US forces.  
Note that collecting scenarios for the purposes of 
developing adaptive behaviors requires a different 
level of detail than simply defining scripted sequences 
of events.  The scenarios are informed by real world 
events, but decompose these into choice points which, 
in practice, may be automatically selected or triggered 
based on the adaptive logic that applies as a training 
event or sequence of training events unfolds.  This is a 
key element in how the parallel objectives of realism in 
tactical methods and realism in tactical variation are 
captured. 
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Although this paper is not intended to enumerate 
specific tactical details collected from real world 
operational lessons learned, it is informative to 
describe the categories into which specific choice 
points fall, in an overall organizational scheme for 
decomposing the adaptive behaviors.  These categories 
emerged from the review of anecdotal operational 
information, irrespective of observations about 
currently existing virtual models.  The following are 
the major categories identified, with examples: 
 

1. Delivery mechanism: multiple and perhaps 
nearly infinite means of adaptation, including 
IEDs with various placement methods, suicide 
bombers, snipers, and other combinations of 
specific delivery methods tied to individual 
capabilities.  

 
2. Munitions type: variations of specific 

munitions choices given a delivery 
mechanism, such as the explosive used with 
an IED or suicide bomber, or the specific 
weapons used by a sniper.  

 
3. Attack location: determined by the 

combination of delivery mechanism and 
avenues of approach and/or fields of fire 
needed to deliver the munitions on the target.   

 
4. Number of attacks: one isolated, two 

coordinated, three coordinated, with/without 
the use of decoys, and other variations. 

 
5. Environment:  includes both the operational 

setting and the mission, which may take place 
in a market, street, check point, searches 
within houses or buildings, presence patrol on 
city streets, and other variations. 

 
Using these categories, scenarios were developed that 
provided illustrated examples of known insurgent 
behaviors and trends.  Scenarios were developed using 
current military doctrine, and for this effort all 
scenarios were focused on squad level dismounted 
patrols in an urban environment similar to Iraq.  In the 
complete set of scenario instances, each instance shows 
the co-evolution of tactics by the adversary pair 
(insurgent vs. Coalition) over time.  In any given 
scenario instance, the US forces conduct a tactical 
operation, the insurgent adversary performs a tactic 
designed to defeat or degrade the effectiveness of the 
US tactic, an outcome occurs, the US adapts and 
develops a counter tactic, a new outcome occurs, and 
finally the insurgents adapt a new tactic, which leads to 

the next scenario instance pairing.  As evidenced in 
real world asymmetric operations lessons learned, 
sheer variation itself is a factor in the enemy’s choice 
of new tactics, along with other considerations 
involved in responding to US counter tactics. 
 

ADAPTIVE MODELING APPROACH 

The scenarios were central to the construction of a 
decision making model for the adaptive adversary 
behaviors, by providing scope for the inputs and 
outputs that constrain the space of possible actions and 
reactions of the adaptive adversary model.  Although 
the set of scenario instances represents a sample 
sequence of adaptations motivated by preceding 
successes and failures, the adaptive behavior model 
automatically generates differing tactics in an 
unscripted way.  The behavior models described in this 
paper provide support for all of the adaptations 
identified in these scenario designs, with sequencing 
entirely driven by exercise events rather than a 
predefined ordering. 
 
Our approach to the problem of behavior adaptation 
and creation for asymmetric adversaries contains two 
primary elements: 
 

1. Initial Insurgent Behaviors: An initial set of 
insurgent behaviors that are created by a 
subject matter expert (SME). This captures 
the current knowledge of insurgent tactics and 
allows for realistic adversary performance 
from the first training simulation. 

 
2. Behavior Adaptation: Adaptive choice 

points that are embedded in the initial 
simulation behaviors allow for adaptive 
behaviors. The SME specifies partial 
behaviors through the use of choice and 
reward points and then the system 
automatically learns which particular 
behavior(s) work best against the current 
adversary. For example, if an IED in a trash 
can is safely disarmed in one scenario, the 
adversary model might respond by combining 
a decoy trash can IED with a sniper in the 
next scenario.   

 
This general approach is used to control behavior at 
two specific levels: tactic and agent. At the tactic 
level, the basic pieces of a training scenario are put in 
place before the scenario begins. This includes placing 
snipers, IEDs, ambush forces, etc. As the scenario 
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unfolds, the behavior at the agent level controls the 
behavior of each agent within the scenario.  
 
In this paper, we focus on initial insurgent behaviors 
and behavior adaptation at the tactical level, though the 
results are directly applicable to the agent level as well.  
 
Tactical Behavior Adaptation 
 
Tactical behaviors determine the initial conditions of a 
training scenario. Prior to the start of the scenario, the 
insurgent forces and objects are put into place by 
running an initial behavior. Adaptive logic in the 
behaviors is used to learn the most effective adversary 
tactics. Adaptive choice points are used to setup all of 
the elements of an insurgent attack such as type of 
attack, IED concealment, insurgent/object placements, 
decoys, munitions, etc. Behavior adaptation works as 
follows: 
 

1. Choices are made for the current instance of a 
training scenario, based on the values 
associated with each choice. 

 
2. The training scenario is carried out by blue 

and red forces. The behavior of the red forces 
(insurgents) during the scenario can be 
controlled by Agent level behaviors or by 
human role players. 

 
3. At the end of the scenario, a reward function 

is used to update the values associated with 
each of the choices that applied during the 
scenario. 

 
There are two important notes to make regarding 
adaptation. First, based on our particular 
implementation of adaptation the system can actually 
select sub-optimal tactics for novice level players while 
still learning what the best tactics are. This allows a 
degree of flexibility when implementing this work as 
part of a training system. Second, adaptation works on 
both human- and computer-created behavior. That is, 
the choice point logic can learn to ignore ineffective 
behaviors regardless of who/what created them. This is 
a very useful functionality when combined with the 
automatic creation of new behaviors. 
 
Additionally, synthetic behaviors naturally depend 
heavily on the virtual environment for location 
markup. The relationship between the environment and 
certain tactics can be very close.  Enemy avenues of 
approach, enemy fire lanes, and lack of cover and 
concealment (exposure) are environmental conditions 

that, combined with tactical failures (failure to follow 
rules of engagement, etc.), may predicate an attack. 
 
Implementation Details 
 
The adversary behaviors were encoded in an existing 
graphical behavior modeling architecture (Fu & 
Houlette, 2002), where behaviors are composed of 
actions, predicates, and directed connecters that 
describe agent behavior. As an action in a behavior can 
reference a primitive action, or another behavior, 
hierarchal behavior networks can be created.  
 
The work described in this paper makes use of an 
updated version of the behavior modeling architecture 
that incorporates the extended dynamic scripting 
algorithm (Ludwig & Farley, 2008). This particular 
learning algorithm was selected based on its ability to 
quickly learn to best an opponent in modern computer 
games and simulations (Ponsen & Spronck, 2004; 
Spronck et al., 2006).  
 
The updated behavior modeling architecture introduces 
two additional types of action nodes to support a 
specialized reinforcement learning algorithm: choice 
points and reward points.  Each choice point represents 
a decision, where the behavior model learns to select 
the best action from the available action. Learning 
occurs when the results of the scenario are received as 
feedback by corresponding reward nodes. In this 
manner, the behaviors can encode the range of 
adaptive behavior found during the training scenario 
development and choose an initial scenario 
configuration likely to surprise the human players. 
 
Related Work 
 
Choice points, as used in the behaviors described in 
this paper, are similar to the choice points found in the 
Hierarchy of Abstract Machine and ALisp 
architectures (Andre & Russell, 2002). The extended 
dynamic scripting algorithm (Ludwig & Farley, 2008) 
builds off of previous research on dynamic scripting 
(Spronck et al, 2006) and hierarchical dynamic 
scripting (Dahlbom & Niklasson, 2006; Ponsen & 
Spronck, 2004). 
 

ADVERSARIAL BEHAVIORS 

Building off of both the developed training scenarios 
and the extended dynamic scripting algorithm, we 
created behaviors to adaptively determine the best 
initial training scenario configuration. To do this we 
specify the possible training scenarios as a hierarchical 
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set of choice points, where the objective is to learn to 
select the scenario configurations most likely to 

succeed against the current players. 

 
Figure 1. Main Adaptive Adversarial Behavior 

 
An abstracted version of the top level tactical behavior 
is shown in Figure 1, giving example behavior 
structure without domain-specific content. The 
ATTACK choice point chooses the A1 adversarial 
tactic, as shown by the bold highlighting.  The choice 
point selection is highlighted, where the A1 tactic is 
selected. 
 
After the main behavior chooses the A1 attack type, 
control is transferred to the A1 sub-behavior, seen in 
Figure 2. The choice point for the A1 tactic must 
choose between a number of different ways to carry 
out the A1 tactic. In this instance, A1_2 is chosen and 
control transfers to the A1_2 sub-behavior. 
 

 
Figure 2. A1 Sub-behavior 

 
The behavior in Figure 2 chooses the specific elements 
of the A1 tactic.  The A1_2 behavior (Figure 3) is 
responsible for choosing the specific location of the 
A1_2 tactic in the simulated world from a number of 

pre-determined locations. A primitive action, 
selectA1_2ActiveFile, is then called to load all of the 
selections into the simulator world. 

 
Figure 3. A1_2 Sub-behavior 

 
The behavior in Figure 3 determines the location of the 
tactic elements in the simulation.  After the A1_2 sub-
behavior is executed, the simulation is ready for the 
team of trainees to begin using the simulation. 
 
Once the simulation has ended, the results from the 
scenario are used to update the values associated with 
the actions in the choice points. This is performed with 
the help of a number of reward functions that supply a 
quantitative value that represents the success of the 
adversary’s tactics in the scenario. For example, a 
reward function might take into account the current 
health levels of all of the members of both team or 
whether or not an IED was detonated. Reward points, 
encoded as part of the behavior model, use one or more 
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of these reward functions to update a choice point’s 
action values. They may also be integrated with 
specific incremental or decremental reward factors that 
take into account considerations such as 
unpredictability.  The research effort focused primarily 
on the design of the approach, as opposed to the 
implementation of a complete set of reward functions. 
 
The outlined approach makes use of machine learning 
methods that learn, statistically, which types of tactical 
situations are more likely to result in a positive 
outcome. Some of the time, the adversary models will 
select the best known initial settings (exploiting) and 
sometimes it will search for another initial 
configuration that might result in even better 
performance (exploring). While this type of adversarial 
learning is not psychologically plausible, it does meet 
the overall training objective in that it will constantly 
challenge and surprise the human trainees in a quick 
and efficient manner. 

FEASIBILITY STUDY 

The objective of the feasibility study was to 
demonstrate what a training event would look like, 
with synthetic adversaries playing out the tactics 
generated by the adaptive behaviors. This study was 
carried out in the distributed and massively multi-
player On-Line Interactive Virtual Environment 
(OLIVE) virtual environment, created by Forterra 
Systems (“Purpose Driven Virtual Worlds for 
Everyone”). 
 
The example training session was conducted with 
human players as participants in a sequence of scenario 
instances. The Reserve Officer Training Corps (ROTC) 
detachment at the University of Central Florida 
provided 7 cadets to fulfill this role. These cadets 
carried out a number of multi-player training sessions 
against adaptive insurgent tactics in the OLIVE 
environment. Additionally, two Arabic speaking 
students role-played the squad interpreter and female 
used in the scenarios and provided cultural context.  
Forterra also provided several support personnel as 
well located across the United States which had the 
added benefit of demonstrating the distributed training 
capability of OLIVE.  After a brief familiarization with 
OLIVE, the training demonstrations were held over a 3 
day period, totaling 9 hours of presence patrol 
exercises.  This was carried out in OLIVE’s virtual 
Baghdad urban terrain area.   
 

 
Figure 4. Patrol Formation with Six Trainees 

 

 
Figure 5. Two Trainees Taking Cover 

 
Two screenshots from the feasibility study are shown 
in Figure 4 and Figure 5.  In order to obtain the 
scenario outcome desired, several actions were planned 
to demonstrate common mistakes that could and have 
been made in typical current operating environments.  
Unit movement techniques, actions on contact, and 
common tasks were maintained in accordance with 
current doctrine.   
 
As an example training event, this demonstrated that 
the insurgent tactics can be modeled and exercised in 
the OLIVE environment, and that the kinds of 
changing tactics that would be generated by the created 
adaptive behaviors can mirror authentic evolving 
tactics identified from the operational world. The 
process of collecting operational information to use as 
the building blocks for choice points in scenarios was 
conducted within a feasible scope of effort, and we 
similarly laid out the path for codifying these.  Part of 
the objective in carrying out this process for a selected 
operational task area was to gain insight into the level 
of complexity for such an effort, as a reference point 
for potential similar work in other task domains.  
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CONCLUSIONS AND THE WAY FORWARD 

One of the primary design goals was to yield an 
adaptive behavior methodology that can be applied in 
many different team training contexts.  Therefore, as 
one outcome of the research, we identified some high 
level defining characteristics for potential training use 
cases in which this design may be applied: 
 

• Virtual Training.  The adaptive behavior 
design makes the general presumption that 
training will be conducted in a virtual 
environment where synthetic enemy agents 
can be controlled by automated behaviors 
applying tactics generated by the adaptive 
logic.  The initial design makes use of the 
OLIVE virtual environment.  It is worth 
noting that this may not be a universal 
requirement, as it is possible to imagine use 
cases even with live training, where the 
adaptive behavior mechanism could be 
provided with direct inputs summarizing the 
results of a live training event, which would 
then serve as the basis for a new set of tactics 
provided descriptively to the administrators of 
a subsequent live training event. 

 
• Tactically Oriented Domains.  This behavior 

modeling approach is ideally suited for 
training domains where there is a naturally 
measurable relationship between tactics and 
outcomes (or at least partial successes and 
failures) in the course of a training event.  In 
order for a synthetic enemy to learn or adapt 
their methods, there must be a computer-
definable notion of success or failure that can 
be associated with previously applied 
methods. 

 
• Scenario Oriented Domains.  The notion of 

gaining practice against an adversary with 
changing tactics naturally lends itself to a 
training mode organized around a framework 
of scenarios in which results can be evaluated 
and lead to adaptations between exercises.  Of 
course for this training context the notion of a 
scenario is strictly a template into which 
variability in tactics, specific events, and other 
details can be enacted. 

 
A full set of developed tactical variations can be 
derived from an initial set of scenarios by categorizing 
the choice points they rely on, and annotating the 
virtual environment with as many possible 
corresponding choice values as are feasible.  This 

essentially results in an implemented library of 
possible tactical variations linked to artifacts of the 
virtual world.  This library is capable of producing a 
very large number of insurgent tactics, of which the 
concrete scenarios are only a subset.  That is, while it 
can perform all of the adaptations outlined in the 
scenarios, it is by no means limited to these scenarios. 
 
Typical Training Use Case 
 
For the training itself, the resulting behavior adaptation 
mechanism and the tactical library would remain 
flexible for use in a variety of contexts.  A likely 
training use case may involve one where a small team 
coordinates a training event.  An instructor (or 
potentially the team leader) provides them with their 
orders and they plan the operation before beginning.  
The exercise is conducted, and they encounter an 
asymmetric threat employing a certain tactic driven by 
the system behaviors, which either succeeds or is 
defeated by the training team.  The exercise is 
concluded, and the team goes through an after action 
review led by the instructor (or potentially the team 
leader), to attempt to identify what tactics the enemy 
was using, how successful they were, and why.  
Depending on the specific goals of the instructor or 
team leader, they may want to make it clear exactly 
what the enemy tactic was, or leave it implicit in what 
is observable in playback.  AAR playback may include 
review from various perspectives including the enemy 
perspectives, or these may be limited to only friendly 
force perspectives (similar to the data available from 
real world operations).  The adaptive behavior 
mechanisms likewise evaluate the success or failure of 
enemy tactics in the exercise. 
 
A subsequent training event is scheduled.  In 
preparation for this, two things happen.  Within the 
behavior mechanism, adaptations have already been 
developed based on the previous exercise.  On the 
human side, the training team is required to prepare for 
the next operation once again, this time giving specific 
thought to any counter-tactics or procedures they may 
choose to apply in the mission.  Depending on the 
length of the exercises, this sequence may be repeated 
several times, either in the same part of the virtual 
environment and under similar basic scenario 
conditions, or potentially in other areas with different 
buildings, cover, diversions, access points, and so on. 
 
Instructional Methods 
 
This adaptive framework is designed to support three 
instructional methods: (1) best tactics, (2) team-based 
tactics, and (3) dynamically adjusted tactics.  In the 
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first case, all trainees see the “latest and greatest” 
behaviors as they have evolved from the entire history 
of training events. As such, the behaviors refer not 
only to specific combinations of tactical choices, but 
the ways in which these tactics are automatically 
chosen in response to the actions of the training 
audience.  In the case of team-based tactics, each new 
group of trainees begins at the same starting point and 
the set of adversary behaviors evolve specifically in 
response to this particular team. For the third case, 
dynamically adjusted, the “latest and greatest” tactics 
serve as the behavior starting point; these behaviors are 
then automatically adjusted to make the level of play 
match that of the training team.   
 
In the envisioned system, there would be one instance 
of the underlying behavior execution manager for each 
training server. This instance is responsible for 
defining the initial scenario setup each time a team 
begins a new training session and applying the 
resulting reward when the training session is complete. 
Instruction method (1) is supported by default – all 
training sessions started on the same server will make 
use of the most developed set of behaviors on that 
server. To support (2), we would need to add a 
mechanism that maps a training team to a particular 
behavior file. When a particular team logs on for the 
first time, a new copy of the behavior file is created. 
All adaptation/creation that occurs will only change the 
currently loaded behavior file. In this way, we can 
support team-based tactics with a small amount of 
additional computer programming. Finally, the 
underlying reinforcement learning algorithm used in 
the choice point mechanism has been used to 
successfully support dynamic difficulty adjustment (3) 
in previous work by Spronck et al. (2006).  
Transferring these results to a given domain is 
relatively straightforward, combining elements of both 
(1) and (2). In this case the system learns the best 
behavior (similar to 1) while simultaneously making 
sub-optimal choices for the particular team (similar to 
2), where the goal is to allow the human team to win 
with some pre-set frequency (e.g. roughly 50% of the 
time).  
 
While the above solution supports (1), (2), and (3) for 
any particular server, additional work would be 
required to support transferring behaviors across 
servers. Specifically, this would require a universal 
central behavior repository, where each server could 
download and upload behaviors. For example, in the 
case of (2), the behaviors for a team would be 
downloaded from the central repository before the 
training session, updated as a result of the training 
session, and then uploaded back to the central 

repository. This would allow a team to use any training 
server while facing the adversaries developed in 
response to their behavior. In the case of (1) and (3), 
the additional difficulty is determining which behavior 
is the “best” across servers, which requires methods for 
determining that one behavior is superior to another.  
In most any of these circumstances, a likely outcome is 
that the training audience would gain exposure to a 
wider variety of enemy tactics than they may otherwise 
encounter. 
 
It is reasonable to anticipate that an adaptive behavior 
modeling framework such as this could be utilized to 
support individual, leader, and small unit training in 
many settings.  A capability to train against a dynamic 
thinking enemy could enhance home station and pre-
deployment small unit training.  With the use of 
distributed virtual environments, this training could 
occur not only in post simulation facilities but just 
about anywhere a high speed internet connection 
exists.  Further, with appropriate security measures, 
any centralized facility could support training of 
deployed units at remote locations.  Finally, as more 
databases become available, mission rehearsal 
exercises may be possible down to the patrol level. 
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