
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 1 of 8

Making Behavior Modeling Accessible to Non-Programmers:

Challenges and Solutions

Bart Presnell, Ryan Houlette, Dan Fu
Stottler Henke Associates, Inc.

San Mateo, CA 94404
{bpresnell, houlette, fu}@stottlerhenke.com

ABSTRACT

To create the most effective possible simulations, domain experts must be able to author, monitor, and modify the

behavior of simulated agents. Current computational models of autonomous agent behavior are not adequate in this

regard. Simple hard-coded models still predominate in many areas, while the most capable and realistic behavior

modeling architectures – such as SOAR and ACT-R – are also generally the most difficult to work with, requiring

trained programmers to develop and update behavior models. We contend that to enable domain experts without

programming expertise to author sophisticated agent behaviors, there are two main challenges that must be

addressed: condition authoring and behavior analysis.

Complex conditions – such as the preconditions for a step in a plan – are a necessary part of almost any behavior

model, but specifying these conditions is not easy. Text-based authoring is an efficient way to enter the information,

but the required syntax can be overwhelming to the non-programmer. Visual authoring methods, by contrast, are

better able to guide non-programmers through the authoring process but tend to be much more time-consuming and

laborious. The second major challenge is enabling non-programmers to analyze the runtime behavior of the models

they create. Behavior models of any significant complexity require multiple “test and fix” iterations to uncover

authoring mistakes. Modeling tools must therefore provide data visualizations that permit the non-programmer to see

both global structure and specific details in the large volume of data generated by test runs of the behavior model. In

addition, authoring tools must easily allow the creation of unit-test-like scenarios.

We have spent the last three years developing an adversary behavior modeling tool for the Air Force, during which

time we have attempted to address both of these challenges. We will present lessons learned and suggested best

practices as well as areas for future work.

ABOUT THE AUTHORS

Bart Presnell is a software engineer at Stottler Henke Associates. He holds an M.S in Computer Science from the

Georgia Institute of Technology. Prior to joining Stottler Henke, Mr. Presnell worked for seven years as a software

engineer for leading game development studios. He is currently working to develop an autonomous planning system

to be used in videogames and interactive simulations.

Ryan Houlette is a project manager and lead software engineer at Stottler Henke Associates. He holds an M.S. in

Computer Science (Artificial Intelligence) from Stanford University. He has participated in the development of a

wide range of AI systems, with a particular focus on autonomous agents and intelligent interfaces. Mr. Houlette is

lead architect of the SimBionic behavior modeling tool and product manager for the SimVentive simulation

construction toolkit. He is also an editor for the AI Game Programming Wisdom book series.

Dan Fu is a group manager at Stottler Henke Associates. He joined nine years ago and has worked on a number of

artificial intelligence (AI) systems including AI authoring tools, wargaming toolsets, immersive training systems, and

AI for simulations. Dr. Fu was principal investigator on the project that created the SimBionic AI middleware, which

enables users to graphically author entity behavior for a simulation or videogame. Dr. Fu holds a B.S. from Cornell

University and a Ph.D. from the University of Chicago, both in computer science.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 2 of 8

Making Behavior Modeling Accessible to Non-Programmers:

Challenges and Solutions

Bart Presnell, Ryan Houlette, Dan Fu
Stottler Henke Associates, Inc.

San Mateo, CA 94404
{bpresnell, houlette, fu}@stottlerhenke.com

INTRODUCTION

To efficiently create the most effective possible

simulations, subject matter experts must be able to

author, monitor, and modify the behavior of simulated

agents. Current computational models of autonomous

agent behavior are not adequate in this regard. Simple

hard-coded models still predominate in many areas,

while the most capable and cognitively realistic

behavior modeling architectures – such as SOAR and

ACT-R – are also generally the most difficult to work

with, requiring trained programmers to develop and

update behavior models.

A new generation of tools is attempting to make the

process of constructing behavior models more

accessible to non-programmers. Examples include

COTS tools such as AI.implant and SimBionic as well

as government-funded efforts such as the OneSAF

Behavior Composer and the Office of Naval Research’s

Affordable Human Behavior Models. Though these

tools do offer some improvements over the status quo,

we believe that significant work remains before

behavior modeling becomes truly user-friendly. For the

past three years, we have been exploring various

approaches to simplifying the model authoring process

during the course of developing an agent behavior

modeling framework. In this paper, we discuss some

specific authoring challenges that we have identified

and examine various techniques for mitigating them.

Background

To ground our discussion, we will first give a brief

overview of our behavior modeling framework (dubbed

Madcap), which served as a testbed for developing the

ideas presented here. Madcap was designed to generate

dynamic adversary behavior in an operational-level air

operations simulation. The framework comprises a

behavior model authoring tool and a model execution

engine that controls entities within an attached

simulation. A two-tiered agent architecture allows

multiple levels of autonomy, with a hierarchical task

network (HTN) deliberative planner providing goal-

driven behavior and a finite state machine (FSM)-based

execution layer driving purely reactive or even scripted

agents.

Using the Madcap model authoring tool, the user

specifies the various components of an agent behavior

model. The agent’s knowledge about the world is

defined using a tree-based editor that displays the

hierarchy of types and instances (and their respective

attributes). The HTNs that constitute the plan library

and the FSMs used by the execution layer are both

specified by sketching flowchart-like sequences of

actions on a graphical “canvas.” The overarching

design goal of the authoring tool was to allow the user

to conceptualize the behavior model primarily in terms

of his or her subject matter expertise rather than in

terms of a programming language. In the following

sections, we discuss two major obstacles to achieving

this goal that we encountered.

CONDITIONAL EXPRESSIONS

At the most basic level, building a behavior model can

be thought of as defining a sequence of actions to be

carried out by an agent. Any nontrivial model will

define multiple possible courses of action, which entails

some decision-making on the part of the agent to

determine which course to follow. It is the job of the

model author to specify the conditions that guide this

decision-making process. The exact form of these

conditions will vary depending on the agent framework,

but they can be broadly characterized as “a logical

expression that evaluates some aspect of the simulation

or behavior model state to determine whether a

particular course of action pertains.” For example, in

the Madcap system the defend-base-with-aircraft plan

has the precondition “There must be a friendly fighter

jet that is within 50 miles of the base and is not already

tasked.” Written as a formal logical expression that the

system knows how to process, this becomes

 (exists ?aircraft

 (AND (is-type ?aircraft fighter)

 (allegiance ?aircraft friendly)

 (< (distance ?aircraft.location

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 3 of 8

 base.location) 50)

 (tasking ?aircraft none)))

While the plain English version of this condition is

easily understandable, the logical translation of it is

daunting to anyone without a background in computer

science. Even if the would-be model builder is able to

puzzle out its meaning, this is a far cry from being able

to generate such an expression on one’s own. (Note that

while this example is particular to our framework,

analogous conditional expressions can be found lurking

in nearly any behavior modeling system.) The cryptic

nature of conditional expressions thus represents a

significant roadblock to the user-friendly authoring of

behavior models.

Considering the problem of conditions more closely,

we see that there are at least two separate difficulties.

First, the syntax is unfamiliar to users who are not

logicians or programmers. As a result, a user who

knows what condition he or she wishes to specify may

be unable to express it in the format demanded by the

behavior model – in other words, translating from the

English version to the formal logical version is

unintuitive. Second, even if we ignore the logical

syntax, deriving the fundamental structure of the

condition still requires a certain level of procedural

thinking that is not natural to many users. The author

must first identify each of the clauses that comprise the

condition. While clauses that map directly to the

underlying simulation (for example, “the distance from

the aircraft to the base is less than 50 miles) are

relatively easy to identify, untrained authors tend to

omit “infrastructural” clauses (such as “aircraft is of

type fighter”) that would be common sense to a human

but that the computational behavior model needs

explicitly stated. Once the set of constituent clauses has

been gathered, the author must then determine how to

structure them into a single statement using words such

as “and,” “or,” and “not.” Simple conjunctions or

disjunctions of clauses are generally easy for users to

grasp, but more complex conditions that involve nested

sub-clauses (for example, “(OR (AND x y) (AND y z))”)

quickly become confusing. Conditions involving

universal and existential quantifiers can be tricky even

for programmers.

Approaches to Condition Authoring

We next consider several approaches to condition

authoring that attempt to address the abovementioned

difficulties. The initial version of our authoring tool

provided a text field with auto-completion (see Figure

1), and the user simply typed the desired conditional

expression. This approach required the user to

formulate the entire formalized logical expression “on

the fly,” with proper nesting of parentheses for sub-

clauses. This proved daunting even for knowledgeable

Figure 1. Text Condition with Auto-Complete

engineers. The flat text representation of the condition

gave no insight into its logical structure. While auto-

completion did help avoid mistakes when filling in the

names of simulation entities and attributes, it did not

provide adequate assistance to a user who was

unfamiliar with the basic expression syntax. We

concluded that pure text-based condition authoring was

too much of a “blank slate” for non-programmers, who

need more guidance.

As a result, we implemented a tree-based editor for

conditional expressions (see Figure 2), where each sub-

clause in the expression was represented as a sub-tree

with the operator at the root. Clauses could be added to

Figure 2. Condition Tree

or deleted from the expression tree using the context

menu or toolbar. The tree editor mitigated some of the

syntax difficulties for novice users by breaking down

the logical expression into more manageable sub-

clauses while clearly depicting the expression’s overall

nested structure. Using the tree, it is difficult to build a

syntactically incorrect expression (though semantically

nonsensical expressions are clearly still possible). It

was, however, extremely tedious to use, forcing the

user to build even the tiniest expression by recursively

constructing sub-trees of variables and operators. In

retrospect, it could also have been improved by using

more English-like language in place of the traditional

logical operators in the tree – for instance, “asset.Status

is greater than 0“ instead of “(>(asset.Status 0))”.

Both of the above approaches are closely tied to the

actual textual representation of the condition. We also

examined a more graphical approach in which the

logical expression is depicted as a directed graph (see

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 4 of 8

Figure 3), where logical operators and their arguments

appear as nodes with arrows showing the logical flow

exists and

type is fighter

allegiance is friendly

less than

distance

50

X

X

X

base

X

Figure 3. Graphical Condition Authoring

between them. The author builds a condition by

dragging operators from a palette and dropping them

onto the partially-constructed graph. The goal was to

retain the tree’s clear presentation of logical structure

while making it less onerous to work with. The graph

view does afford greater ease of use, enabling a more

freeform authoring style where the user effectively

“sketches” the desired condition. Ultimately, though,

we felt that the usability improvement was outweighed

by a less intuitive visual representation, which makes it

hard to take in the entire expression at a glance. We

thus decided to keep our existing tree editor. Further

research in this area might produce other expression

visualizations that are more immediately intuitive.

All of the approaches to condition authoring that we

have described so far are fundamentally descriptive:

that is, the user must explicitly define each attribute of

the simulation state that the behavior model should test

to determine if the condition holds. As a consequence,

they all face the difficult challenge of empowering

naïve users to construct logical expressions. An

alternative approach that has the potential to largely

avoid this problem is authoring by demonstration,

where the user illustrates the desired condition in the

context of the simulation itself. The behavior modeling

system then automatically extracts the conditional

expression from the simulation state at the time of the

demonstration. The resulting condition is displayed to

the user, who has the opportunity to edit it (using one

of the previously-discussed methods). For example, if

the user wished to specify the defend-base-with-aircraft

condition via demonstration, he or she would run the

simulation under manual control. When a base came

under attack, the user would select an idle friendly

fighter that was within 50 miles of the base and order it

to attack the incoming enemy. The model would take a

snapshot of the state of the world at the time that order

was given and extract the relevant condition.

This approach has the considerable advantage of

placing the condition-authoring process on familiar

ground for the user, allowing him to act directly from

subject-matter expertise instead of requiring an

intermediary stage of introspection and logical

codification (which often results in incompletely-

specified conditions). It also largely (but not entirely)

insulates the author from the underlying logical syntax

and structure. While promising in concept, the

authoring-by-demonstration approach does however

pose its own significant challenges. To demonstrate a

desired condition, the user must first set up an

appropriate exemplar situation that provides the needed

learning opportunity (i.e., a base under attack with a

nearby untasked friendly fighter). This can be time-

consuming, particularly when multiple examples are

needed to clarify a complex condition. Practice is also

required to define concise, clear examples. In addition,

the problem of automatically extracting conditions from

simulation snapshots can be quite difficult, especially if

there are many simulation variables. The resultant

conditions may be overly verbose, containing many

extra clauses that test irrelevant aspects of simulation

state. The user must prune these clauses in the post-

processing step.

MODEL DEBUGGING

While improving the authoring of conditions will

greatly reduce the difficulty of creating behavior

models, anyone who has ever built a complex system

knows that things never work correctly the first time.

This intuition was borne out in the use of the Madcap

model editor. Although the model authoring was fairly

time-consuming, the bulk of model development time

was actually spent in the debugging process. While the

Madcap execution engine did supply logging facilities

to help with model debugging, much of the debugging

had to be done by software engineers instead of the

model authors. From this experience, we discovered

two key tools that are needed to help authors debug

their models: unit tests and extensive logging with

sophisticated data visualization.

Unit Testing

Unit tests are a very popular software engineering

paradigm. They allow software engineers to set up tests

for each component of a software product. By having

these tests, the software engineer is able to easily test

each component of the project separately rather than

trying to force the entire project into states that test

each underling component. In addition, unit test are

usually run in an automated fashion which greatly

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 5 of 8

speeds up the testing process. This automated testing

enables development paradigms that emphasize

continuous refactoring, such as extreme programming.

The unit tests allow programmers to change

components and then quickly verify that the changes

have not broken the required inputs and outputs.

Both the ability to directly test individual components

and to quickly and thoroughly retest components to

support refactoring are very valuable in the

development of behavior models. Behavior models

tend to be complex hierarchical systems, and

discovering flaws in the model by merely looking at the

results of simulation runs is very difficult. In debugging

Madcap behaviors we often had to break the model into

small chunks, separately checking condition functions,

selected actions, and effect functions. Unfortunately,

we had to manually edit the behavior model to test each

component. Having a unit test suite to automatically

allow testing of each component would have made this

testing process much easier. In addition, the

development of Madcap revealed that behavior model

development was similar to extreme programming. We

started with very simple behaviors and situations and

slowly built upon these. During this process, we

frequently discovered that we needed an entirely new

type of behavior. Adding this behavior often required

significant refactoring, which took a significant amount

of time because of the need to go back and verify

existing behaviors. The use of automated unit tests

would have greatly reduced this time.

Unit tests would be of great benefit to behavior model

development, but for any authoring tool to support

effective unit testing the behavior model must provide

two features. First, there must be a clear separation

between the model execution engine and the simulated

world. In the Madcap agent architecture, the agent

receives updates from the simulated world, which are

stored in an internal knowledge base. The agent then

makes behavior choices based entirely on the

information stored in the knowledge base. Because of

this architecture, we were able to create test conditions

by using an initialization file to load information into

each agent’s knowledge base without having to actually

run the simulation. Being able to create a partial world

state with no connection to the simulation has two key

advantages. First, it allows the author to easily set up

any situation that needs to be tested. This is a huge

benefit for the author because it allows more thorough

testing and validation of the model. The author can

concentrate on determining which world states the

model must handle, as opposed to expending a great

deal of effort trying to force the simulation into the

needed test states. Second, it allows the authoring tool

to save snapshots of world states from runs of the

simulation regardless of whether the simulation natively

supports this. To save a state, the tool can either save

out an agent’s internal representation of the world or

query the simulation interface for the current state of

the world. For future testing this information can either

be loaded into the agent’s internal representation or be

used to supply a stub simulation interface with the

needed information to respond to agent queries.

Regardless of the technique used to store world state, it

is very useful for the debugging process. It allows the

author to study the state and test model changes much

more efficiently because they no longer need to wait for

the simulation to run to the desired state – they can

jump instantly to it.

The second feature the model architecture must support

for effective unit testing is having each authorable

component be a public functional object. This means

the component must be accessible and the component

cannot store state within itself. The first requirement

specifies that the component can be reached and tested

by an external test framework. This is not to imply that

behaviors must make all of their internal representation

public. If a behavior object has, for example, a

precondition that can be authored, the behavior object

must simply provide some way to externally test this

precondition. Whether the behavior object has a

method to retrieve the precondition function object

itself or a method to retrieve the result of the

precondition test is unimportant, as long as there is

some way for an object outside of the behavior object

to get the result of the component test. The second

requirement – that the component be stateless – is a bit

trickier for many behavior models, particularly finite

state machines. This requirement is needed because we

perform our unit tests on static states. To have the

result of these unit tests be consistent with the results

during actual simulation runs, the result of any behavior

component must be based on purely the current state

and not the entire history of states. Our solution for

finite state machines is to move the state information

from the finite state machine component to the global

state. This has two benefits. First, it forces the author to

explicitly set this information in test cases. Second, it

separates the fairly large static description of the

behavior – which in the case of a finite state machine is

the transition tables – from the small amount of

information needed to update a particular instance – for

finite state machines, just the current state.. By making

this separation, many agents can share the same

behavior description, rather than each agent having

their own copy. In very large simulations, this could

represent a significant memory savings.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 6 of 8

As described above, unit testing does place some

significant requirements on the underlying behavior

architecture. Based on our experience with Madcap,

however, we believe that the benefits are worthwhile.

Unit testing can help make the model authoring process

more accessible to non-programmers by significantly

streamlining the iterative development process and

granting the author more visibility into and control over

the process.

Debug Logging

While unit tests make the debugging process much

simpler by allowing the author to easily test smaller

parts of the behavior model, there will still be

unexpected behavior in the course of running the full

simulation. To have subject matter experts reasonably

debug unexpected behaviors an authoring tool must

support a very sophisticated level of debug logging.

The initial Madcap authoring tool had a fairly extensive

set of logging facilities. It produced logs of each

agent’s selected behaviors and goals throughout the

simulation run. In addition, the search process that

agents went through to construct the plan was

extensively logged. The state of the world at the

beginning of the plan search was recorded, and the path

through the hierarchical task network was also

recorded. However, all of this information was not

sufficient to allow non-software engineers to debug the

behavior models. There were two main flaws in the

Madcap logging system. First, the log of agent actions

in the simulation, which was displayed in an intuitive

timeline graph, was detailed enough to alert the author

that the desired behavior was not performed, but it did

not provide enough information to allow the author to

determine what had caused the incorrect behavior to be

selected. Second, our subsequent attempts to log more

of the behavior model decision process resulted in an

surfeit of information – enough to produce a memory

overflow in many text editors – that when converted

into a graphical display was simply too dense to be

understandable. While the volume of information

generated can perhaps be attributed to the exponential

search process of a planning algorithm, as we look to

simulate larger and longer scenarios, the number of

decisions generated by even a simple reactive system

will become similarly voluminous. We therefore

propose some tools to help filter unnecessary data and

some visualization methods that can be used to display

a large amount of model execution data while still

providing a useful level of detail.

One essential feature is the ability for the user to enable

or disable logging on a per-behavior component basis.

From our experience with Madcap, simply logging all

information will be overwhelming for any user. A

better way to attack the problem is to use a high-level

overview of the behaviors executed by each agent

during a simulation run to determine when an error

occurs, and then add more detailed logging to very

specific parts of the behavior model to pinpoint the

problem. Authors should be able to select whether

components log their input parameters, outputs, or

both. The ability to log the output of arbitrary user-

specified functions allows the author to annotate the

log. In addition, the author should be able to specify

time windows or conditions (based on behavior

components’ input parameters) to limit when data is

logged. With these facilities, the author should be able

to log precisely the needed information for specific

trouble areas without drowning in extraneous

information.

A second extremely useful logging tool is an

explanation facility that provides the rationale for the

selection of executed behaviors as well as the reasons

why other behaviors were not selected. This facility

poses several challenges. We are once again faced with

a potentially huge amount of data that must be stored

and displayed. In addition, there must be a selection

process that determines which agent decisions need

explanations. Most computational behavior models are

mechanical processes that consider a large number of

possible actions that would not be considered for

common-sense reasons by a human. The decision-

making algorithms do – if they are functioning

correctly – generally reject these nonsensical actions,

but this still represents a significant fraction of

processing time. Ideally we would like the explanation

facility to avoid explaining these uninteresting actions.

The best way to develop the needed filtering process is

through machine learning, but this is work we did not

attempt in Madcap.

The final issue that we discuss here is the question of

how to display voluminous log data in an intuitive way.

A number of display methods were considered and

attempted in the development of Madcap. We will

review some these below.

The first method to display the log data was a formatted

text display. While simple, this approach was fairly

effective as it allowed for a large amount of detail to be

provided. In addition, it was fairly easy to navigate

through the information using text search. As a result,

we used text-based log displays frequently in Madcap.

The biggest disadvantage with this approach is that it

makes it very difficult to see changes in behavior over

time.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 7 of 8

Figure 4. Timeline View

The second method we used was a timeline view (see

Figure 4), which was very effective in showing the

overall sequence of behaviors. However, this view was

ineffective at displaying the details of the agent’s

decision-making process.

The third method we used was a hyperbolic tree (see

Figure 5), which was reasonably effective in showing

the plan search process. The tree depicts the overall

flow of the search while allowing the user to focus on a

particular segment of the search to get a great deal of

detail. Though the hyperbolic tree is well-suited to

displaying the plan search process, it is not the ideal

structure for showing the execution history of other

elements of components of our agent architecture, such

as finite state machines and reactive behavior tables.

This suggests that multiple visualization methods may

need to be deployed in concert to obtain full coverage.

Figure 5. Hyperbolic Tree

The final visualization method that we considered was

a TreeMap, which is a 2D display of hierarchical data

that uses color and shape to distinguish between leaf

nodes. In a TreeMap, the user can select a node to view

extremely detailed information about that node. While

this approach was somewhat effective at showing

planning search data, it was better-suited to the display

of static data than to sequences of changing states over

time. This proved problematic, since one of the core

requirements for visualizations of behavior model

execution is the ability to depict the agent’s sequence of

decisions.

Figure 6. TreeMap View

In our work on Madcap, we did not find a perfect way

to display the log data generated by behavior models.

However, we discovered that the most effective

techniques used sophisticated rendering techniques to

display the entire sequence of decisions made by a

behavior model with very little detail, but also allowed

the user to drill down to specific points in the sequence

to see more detail. Future work needs to be done using

those broad principles to formulate improved

visualizations that are more specific to the needs of

behavior models.

CONCLUSION

The problem of allowing subject matter experts to

author behavior models is very difficult. This is

primarily because the behavior model authors are asked

to do tasks that software engineers spend a great deal of

time learning to do: changing intuitively understood

conditions into a series of Boolean expressions a

computer can understand, and then attempting to

discover why the computer did not get the expected

answer for our series of Boolean expressions. We have

attempted to convey some of the many issues involved

in trying to ease the burden of creating logical

statements. In addition, our experience with developing

behavior models for our own agent architecture has

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2007

2007 Paper No. 7258 Page 8 of 8

convinced us that making simplified model debugging

tools available in a model authoring tool would make

the authoring process much more accessible to non-

programmers.

ACKNOWLEDGEMENTS

This work was supported in part by Air Force Research

Laboratory grant FA8750-05-C-0057.

REFERENCES

Beck, K. (1999). Embracing Change with Extreme

Programming. Computer 32, 10, 70-77.

Johnson, B. (1992). TreeViz: treemap visualization of

hierarchically structured information. Proceedings of

the SIGCHI conference on Human factors in

computing systems, 1992, 369-370.

Lamping, J., Rao, R., & Pirolli, P. (1995). A

focus+context technique based on hyperbolic

geometry for visualizing large hierarchies.

Proceedings of the Conference on Human Factors in

Computing Systems, 1995, 401-408.

