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ABSTRACT 

 

To create the most effective possible simulations, domain experts must be able to author, monitor, and modify the 

behavior of simulated agents. Current computational models of autonomous agent behavior are not adequate in this 

regard. Simple hard-coded models still predominate in many areas, while the most capable and realistic behavior 

modeling architectures – such as SOAR and ACT-R – are also generally the most difficult to work with, requiring 

trained programmers to develop and update behavior models. We contend that to enable domain experts without 

programming expertise to author sophisticated agent behaviors, there are two main challenges that must be 

addressed:  condition authoring and behavior analysis.  

 

Complex conditions – such as the preconditions for a step in a plan – are a necessary part of almost any behavior 

model, but specifying these conditions is not easy. Text-based authoring is an efficient way to enter the information, 

but the required syntax can be overwhelming to the non-programmer. Visual authoring methods, by contrast, are 

better able to guide non-programmers through the authoring process but tend to be much more time-consuming and 

laborious. The second major challenge is enabling non-programmers to analyze the runtime behavior of the models 

they create. Behavior models of any significant complexity require multiple “test and fix” iterations to uncover 

authoring mistakes. Modeling tools must therefore provide data visualizations that permit the non-programmer to see 

both global structure and specific details in the large volume of data generated by test runs of the behavior model. In 

addition, authoring tools must easily allow the creation of unit-test-like scenarios. 

 

We have spent the last three years developing an adversary behavior modeling tool for the Air Force, during which 

time we have attempted to address both of these challenges. We will present lessons learned and suggested best 

practices as well as areas for future work.   
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INTRODUCTION 

 

To efficiently create the most effective possible 

simulations, subject matter experts must be able to 

author, monitor, and modify the behavior of simulated 

agents. Current computational models of autonomous 

agent behavior are not adequate in this regard. Simple 

hard-coded models still predominate in many areas, 

while the most capable and cognitively realistic 

behavior modeling architectures – such as SOAR and 

ACT-R – are also generally the most difficult to work 

with, requiring trained programmers to develop and 

update behavior models. 

 

A new generation of tools is attempting to make the 

process of constructing behavior models more 

accessible to non-programmers. Examples include 

COTS tools such as AI.implant and SimBionic as well 

as government-funded efforts such as the OneSAF 

Behavior Composer and the Office of Naval Research’s 

Affordable Human Behavior Models. Though these 

tools do offer some improvements over the status quo, 

we believe that significant work remains before 

behavior modeling becomes truly user-friendly. For the 

past three years, we have been exploring various 

approaches to simplifying the model authoring process 

during the course of developing an agent behavior 

modeling framework. In this paper, we discuss some 

specific authoring challenges that we have identified 

and examine various techniques for mitigating them. 

 

Background 

 

To ground our discussion, we will first give a brief 

overview of our behavior modeling framework (dubbed 

Madcap), which served as a testbed for developing the 

ideas presented here. Madcap was designed to generate 

dynamic adversary behavior in an operational-level air 

operations simulation. The framework comprises a 

behavior model authoring tool and a model execution 

engine that controls entities within an attached 

simulation. A two-tiered agent architecture allows 

multiple levels of autonomy, with a hierarchical task 

network (HTN) deliberative planner providing goal-

driven behavior and a finite state machine (FSM)-based 

execution layer driving purely reactive or even scripted 

agents.  

 

Using the Madcap model authoring tool, the user 

specifies the various components of an agent behavior 

model. The agent’s knowledge about the world is 

defined using a tree-based editor that displays the 

hierarchy of types and instances (and their respective 

attributes). The HTNs that constitute the plan library 

and the FSMs used by the execution layer are both 

specified by sketching flowchart-like sequences of 

actions on a graphical “canvas.”  The overarching 

design goal of the authoring tool was to allow the user 

to conceptualize the behavior model primarily in terms 

of his or her subject matter expertise rather than in 

terms of a programming language. In the following 

sections, we discuss two major obstacles to achieving 

this goal that we encountered. 

 

 

CONDITIONAL EXPRESSIONS 

 

At the most basic level, building a behavior model can 

be thought of as defining a sequence of actions to be 

carried out by an agent. Any nontrivial model will 

define multiple possible courses of action, which entails 

some decision-making on the part of the agent to 

determine which course to follow. It is the job of the 

model author to specify the conditions that guide this 

decision-making process. The exact form of these 

conditions will vary depending on the agent framework, 

but they can be broadly characterized as “a logical 

expression that evaluates some aspect of the simulation 

or behavior model state to determine whether a 

particular course of action pertains.”  For example, in 

the Madcap system the defend-base-with-aircraft plan 

has the precondition “There must be a friendly fighter 

jet that is within 50 miles of the base and is not already 

tasked.”  Written as a formal logical expression that the 

system knows how to process, this becomes 

 

    (exists ?aircraft  

 (AND (is-type ?aircraft fighter) 

            (allegiance ?aircraft friendly) 

            (< (distance ?aircraft.location 
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                                 base.location) 50) 

            (tasking ?aircraft none))) 

 

While the plain English version of this condition is 

easily understandable, the logical translation of it is 

daunting to anyone without a background in computer 

science. Even if the would-be model builder is able to 

puzzle out its meaning, this is a far cry from being able 

to generate such an expression on one’s own. (Note that 

while this example is particular to our framework, 

analogous conditional expressions can be found lurking 

in nearly any behavior modeling system.)  The cryptic 

nature of conditional expressions thus represents a 

significant roadblock to the user-friendly authoring of 

behavior models. 

 

Considering the problem of conditions more closely, 

we see that there are at least two separate difficulties. 

First, the syntax is unfamiliar to users who are not 

logicians or programmers. As a result, a user who 

knows what condition he or she wishes to specify may 

be unable to express it in the format demanded by the 

behavior model – in other words, translating from the 

English version to the formal logical version is 

unintuitive. Second, even if we ignore the logical 

syntax, deriving the fundamental structure of the 

condition still requires a certain level of procedural 

thinking that is not natural to many users. The author 

must first identify each of the clauses that comprise the 

condition. While clauses that map directly to the 

underlying simulation (for example, “the distance from 

the aircraft to the base is less than 50 miles) are 

relatively easy to identify, untrained authors tend to 

omit “infrastructural” clauses (such as “aircraft is of 

type fighter”) that would be common sense to a human 

but that the computational behavior model needs 

explicitly stated. Once the set of constituent clauses has 

been gathered, the author must then determine how to 

structure them into a single statement using words such 

as “and,” “or,” and “not.”  Simple conjunctions or 

disjunctions of clauses are generally easy for users to 

grasp, but more complex conditions that involve nested 

sub-clauses (for example, “(OR (AND x y) (AND y z))”) 

quickly become confusing. Conditions involving 

universal and existential quantifiers can be tricky even 

for programmers. 

 

Approaches to Condition Authoring 

 

We next consider several approaches to condition 

authoring that attempt to address the abovementioned 

difficulties. The initial version of our authoring tool 

provided a text field with auto-completion (see Figure 

1), and the user simply typed the desired conditional 

expression. This approach required the user to 

formulate the entire formalized logical expression “on 

the fly,” with proper nesting of parentheses for sub-

clauses. This proved daunting even for knowledgeable 

 

 
 

Figure 1. Text Condition with Auto-Complete 

 

engineers. The flat text representation of the condition 

gave no insight into its logical structure. While auto-

completion did help avoid mistakes when filling in the 

names of simulation entities and attributes, it did not 

provide adequate assistance to a user who was 

unfamiliar with the basic expression syntax. We 

concluded that pure text-based condition authoring was 

too much of a “blank slate” for non-programmers, who 

need more guidance. 

 

As a result, we implemented a tree-based editor for 

conditional expressions (see Figure 2), where each sub-

clause in the expression was represented as a sub-tree 

with the operator at the root. Clauses could be added to  

 

 
 

Figure 2. Condition Tree 

 

or deleted from the expression tree using the context 

menu or toolbar. The tree editor mitigated some of the 

syntax difficulties for novice users by breaking down 

the logical expression into more manageable sub-

clauses while clearly depicting the expression’s overall 

nested structure. Using the tree, it is difficult to build a 

syntactically incorrect expression (though semantically 

nonsensical expressions are clearly still possible). It 

was, however, extremely tedious to use, forcing the 

user to build even the tiniest expression by recursively 

constructing sub-trees of variables and operators. In 

retrospect, it could also have been improved by using 

more English-like language in place of the traditional 

logical operators in the tree – for instance, “asset.Status 

is greater than 0“ instead of “(>(asset.Status 0))”. 

 

Both of the above approaches are closely tied to the 

actual textual representation of the condition. We also 

examined a more graphical approach in which the 

logical expression is depicted as a directed graph (see 
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Figure 3), where logical operators and their arguments 

appear as nodes with arrows showing the logical flow  
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Figure 3. Graphical Condition Authoring 

 

between them. The author builds a condition by 

dragging operators from a palette and dropping them 

onto the partially-constructed graph. The goal was to 

retain the tree’s clear presentation of logical structure 

while making it less onerous to work with. The graph 

view does afford greater ease of use, enabling a more 

freeform authoring style where the user effectively 

“sketches” the desired condition. Ultimately, though, 

we felt that the usability improvement was outweighed 

by a less intuitive visual representation, which makes it 

hard to take in the entire expression at a glance. We 

thus decided to keep our existing tree editor. Further 

research in this area might produce other expression 

visualizations that are more immediately intuitive. 

 

All of the approaches to condition authoring that we 

have described so far are fundamentally descriptive:  

that is, the user must explicitly define each attribute of 

the simulation state that the behavior model should test 

to determine if the condition holds. As a consequence, 

they all face the difficult challenge of empowering 

naïve users to construct logical expressions. An 

alternative approach that has the potential to largely 

avoid this problem is authoring by demonstration, 

where the user illustrates the desired condition in the 

context of the simulation itself. The behavior modeling 

system then automatically extracts the conditional 

expression from the simulation state at the time of the 

demonstration. The resulting condition is displayed to 

the user, who has the opportunity to edit it (using one 

of the previously-discussed methods). For example, if 

the user wished to specify the defend-base-with-aircraft 

condition via demonstration, he or she would run the 

simulation under manual control. When a base came 

under attack, the user would select an idle friendly 

fighter that was within 50 miles of the base and order it 

to attack the incoming enemy. The model would take a 

snapshot of the state of the world at the time that order 

was given and extract the relevant condition. 

 

This approach has the considerable advantage of 

placing the condition-authoring process on familiar 

ground for the user, allowing him to act directly from 

subject-matter expertise instead of requiring an 

intermediary stage of introspection and logical 

codification (which often results in incompletely-

specified conditions). It also largely (but not entirely) 

insulates the author from the underlying logical syntax 

and structure. While promising in concept, the 

authoring-by-demonstration approach does however 

pose its own significant challenges. To demonstrate a 

desired condition, the user must first set up an 

appropriate exemplar situation that provides the needed 

learning opportunity (i.e., a base under attack with a 

nearby untasked friendly fighter). This can be time-

consuming, particularly when multiple examples are 

needed to clarify a complex condition. Practice is also 

required to define concise, clear examples. In addition, 

the problem of automatically extracting conditions from 

simulation snapshots can be quite difficult, especially if 

there are many simulation variables. The resultant 

conditions may be overly verbose, containing many 

extra clauses that test irrelevant aspects of simulation 

state. The user must prune these clauses in the post-

processing step.  

 

 

MODEL DEBUGGING 

 

While improving the authoring of conditions will 

greatly reduce the difficulty of creating behavior 

models, anyone who has ever built a complex system 

knows that things never work correctly the first time. 

This intuition was borne out in the use of the Madcap 

model editor. Although the model authoring was fairly 

time-consuming, the bulk of model development time 

was actually spent in the debugging process. While the 

Madcap execution engine did supply logging facilities 

to help with model debugging, much of the debugging 

had to be done by software engineers instead of the 

model authors. From this experience, we discovered 

two key tools that are needed to help authors debug 

their models: unit tests and extensive logging with 

sophisticated data visualization. 

 

Unit Testing 

 

Unit tests are a very popular software engineering 

paradigm. They allow software engineers to set up tests 

for each component of a software product. By having 

these tests, the software engineer is able to easily test 

each component of the project separately rather than 

trying to force the entire project into states that test 

each underling component. In addition, unit test are 

usually run in an automated fashion which greatly 
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speeds up the testing process. This automated testing 

enables development paradigms that emphasize 

continuous refactoring, such as extreme programming. 

The unit tests allow programmers to change 

components and then quickly verify that the changes 

have not broken the required inputs and outputs. 

 

Both the ability to directly test individual components 

and to quickly and thoroughly retest components to 

support refactoring are very valuable in the 

development of behavior models. Behavior models 

tend to be complex hierarchical systems, and 

discovering flaws in the model by merely looking at the 

results of simulation runs is very difficult. In debugging 

Madcap behaviors we often had to break the model into 

small chunks, separately checking condition functions, 

selected actions, and effect functions. Unfortunately, 

we had to manually edit the behavior model to test each 

component. Having a unit test suite to automatically 

allow testing of each component would have made this 

testing process much easier. In addition, the 

development of Madcap revealed that behavior model 

development was similar to extreme programming. We 

started with very simple behaviors and situations and 

slowly built upon these. During this process, we 

frequently discovered that we needed an entirely new 

type of behavior. Adding this behavior often required 

significant refactoring, which took a significant amount 

of time because of the need to go back and verify 

existing behaviors. The use of automated unit tests 

would have greatly reduced this time. 

 

Unit tests would be of great benefit to behavior model 

development, but for any authoring tool to support 

effective unit testing the behavior model must provide 

two features. First, there must be a clear separation 

between the model execution engine and the simulated 

world. In the Madcap agent architecture, the agent 

receives updates from the simulated world, which are 

stored in an internal knowledge base. The agent then 

makes behavior choices based entirely on the 

information stored in the knowledge base. Because of 

this architecture, we were able to create test conditions 

by using an initialization file to load information into 

each agent’s knowledge base without having to actually 

run the simulation. Being able to create a partial world 

state with no connection to the simulation has two key 

advantages. First, it allows the author to easily set up 

any situation that needs to be tested. This is a huge 

benefit for the author because it allows more thorough 

testing and validation of the model. The author can 

concentrate on determining which world states the 

model must handle, as opposed to expending a great 

deal of effort trying to force the simulation into the 

needed test states. Second, it allows the authoring tool 

to save snapshots of world states from runs of the 

simulation regardless of whether the simulation natively 

supports this. To save a state, the tool can either save 

out an agent’s internal representation of the world or 

query the simulation interface for the current state of 

the world. For future testing this information can either 

be loaded into the agent’s internal representation or be 

used to supply a stub simulation interface with the 

needed information to respond to agent queries. 

Regardless of the technique used to store world state, it 

is very useful for the debugging process. It allows the 

author to study the state and test model changes much 

more efficiently because they no longer need to wait for 

the simulation to run to the desired state – they can 

jump instantly to it. 

  

The second feature the model architecture must support 

for effective unit testing is having each authorable 

component be a public functional object. This means 

the component must be accessible and the component 

cannot store state within itself. The first requirement 

specifies that the component can be reached and tested 

by an external test framework. This is not to imply that 

behaviors must make all of their internal representation 

public. If a behavior object has, for example, a 

precondition that can be authored, the behavior object 

must simply provide some way to externally test this 

precondition. Whether the behavior object has a 

method to retrieve the precondition function object 

itself or a method to retrieve the result of the 

precondition test is unimportant, as long as there is 

some way for an object outside of the behavior object 

to get the result of the component test. The second 

requirement – that the component be stateless – is a bit 

trickier for many behavior models, particularly finite 

state machines. This requirement is needed because we 

perform our unit tests on static states.  To have the 

result of these unit tests be consistent with the results 

during actual simulation runs, the result of any behavior 

component must be based on purely the current state 

and not the entire history of states. Our solution for 

finite state machines is to move the state information 

from the finite state machine component to the global 

state. This has two benefits. First, it forces the author to 

explicitly set this information in test cases. Second, it 

separates the fairly large static description of the 

behavior – which in the case of a finite state machine is 

the transition tables – from the small amount of 

information needed to update a particular instance – for 

finite state machines, just the current state.. By making 

this separation, many agents can share the same 

behavior description, rather than each agent having 

their own copy. In very large simulations, this could 

represent a significant memory savings. 
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As described above, unit testing does place some 

significant requirements on the underlying behavior 

architecture. Based on our experience with Madcap, 

however, we believe that the benefits are worthwhile.  

Unit testing can help make the model authoring process 

more accessible to non-programmers by significantly 

streamlining the iterative development process and 

granting the author more visibility into and control over 

the process. 

 

Debug Logging 

 

While unit tests make the debugging process much 

simpler by allowing the author to easily test smaller 

parts of the behavior model, there will still be 

unexpected behavior in the course of running the full 

simulation. To have subject matter experts reasonably 

debug unexpected behaviors an authoring tool must 

support a very sophisticated level of debug logging. 

  

The initial Madcap authoring tool had a fairly extensive 

set of logging facilities. It produced logs of each 

agent’s selected behaviors and goals throughout the 

simulation run. In addition, the search process that 

agents went through to construct the plan was 

extensively logged. The state of the world at the 

beginning of the plan search was recorded, and the path 

through the hierarchical task network was also 

recorded. However, all of this information was not 

sufficient to allow non-software engineers to debug the 

behavior models. There were two main flaws in the 

Madcap logging system. First, the log of agent actions 

in the simulation, which was displayed in an intuitive 

timeline graph, was detailed enough to alert the author 

that the desired behavior was not performed, but it did 

not provide enough information to allow the author to 

determine what had caused the incorrect behavior to be 

selected. Second, our subsequent attempts to log more 

of the behavior model decision process resulted in an 

surfeit of information – enough to produce a memory 

overflow in many text editors – that when converted 

into a graphical display was simply too dense to be 

understandable. While the volume of information 

generated can perhaps be attributed to the exponential 

search process of a planning algorithm, as we look to 

simulate larger and longer scenarios, the number of 

decisions generated by even a simple reactive system 

will become similarly voluminous. We therefore 

propose some tools to help filter unnecessary data and 

some visualization methods that can be used to display 

a large amount of model execution data while still 

providing a useful level of detail. 

 

One essential feature is the ability for the user to enable 

or disable logging on a per-behavior component basis.  

From our experience with Madcap, simply logging all 

information will be overwhelming for any user. A 

better way to attack the problem is to use a high-level 

overview of the behaviors executed by each agent 

during a simulation run to determine when an error 

occurs, and then add more detailed logging to very 

specific parts of the behavior model to pinpoint the 

problem. Authors should be able to select whether 

components log their input parameters, outputs, or 

both. The ability to log the output of arbitrary user-

specified functions allows the author to annotate the 

log. In addition, the author should be able to specify 

time windows or conditions (based on behavior 

components’ input parameters) to limit when data is 

logged. With these facilities, the author should be able 

to log precisely the needed information for specific 

trouble areas without drowning in extraneous 

information.  

 

A second extremely useful logging tool is an 

explanation facility that provides the rationale for the 

selection of executed behaviors as well as the reasons 

why other behaviors were not selected. This facility 

poses several challenges. We are once again faced with 

a potentially huge amount of data that must be stored 

and displayed. In addition, there must be a selection 

process that determines which agent decisions need 

explanations. Most computational behavior models are 

mechanical processes that consider a large number of 

possible actions that would not be considered for 

common-sense reasons by a human. The decision-

making algorithms do – if they are functioning 

correctly – generally reject these nonsensical actions, 

but this still represents a significant fraction of 

processing time. Ideally we would like the explanation 

facility to avoid explaining these uninteresting actions. 

The best way to develop the needed filtering process is 

through machine learning, but this is work we did not 

attempt in Madcap. 

 

The final issue that we discuss here is the question of 

how to display voluminous log data in an intuitive way. 

A number of display methods were considered and 

attempted in the development of Madcap. We will 

review some these below. 

 

The first method to display the log data was a formatted 

text display. While simple, this approach was fairly 

effective as it allowed for a large amount of detail to be 

provided. In addition, it was fairly easy to navigate 

through the information using text search.  As a result, 

we used text-based log displays frequently in Madcap. 

The biggest disadvantage with this approach is that it 

makes it very difficult to see changes in behavior over 

time. 
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Figure 4. Timeline View 

 

The second method we used was a timeline view (see  

Figure 4), which was very effective in showing the 

overall sequence of behaviors. However, this view was 

ineffective at displaying the details of the agent’s 

decision-making process. 

  

The third method we used was a hyperbolic tree (see 

Figure 5), which was reasonably effective in showing 

the plan search process. The tree depicts the overall 

flow of the search while allowing the user to focus on a 

particular segment of the search to get a great deal of 

detail. Though the hyperbolic tree is well-suited to 

displaying the plan search process, it is not the ideal 

structure for showing the execution history of other 

elements of components of our agent architecture, such 

as finite state machines and reactive behavior tables. 

This suggests that multiple visualization methods may 

need to be deployed in concert to obtain full coverage. 

 

 
 

Figure 5. Hyperbolic Tree 

 

The final visualization method that we considered was 

a TreeMap, which is a 2D display of hierarchical data 

that uses color and shape to distinguish between leaf 

nodes. In a TreeMap, the user can select a node to view 

extremely detailed information about that node. While 

this approach was somewhat effective at showing 

planning search data, it was better-suited to the display 

of static data than to sequences of changing states over 

time. This proved problematic, since one of the core 

requirements for visualizations of behavior model 

execution is the ability to depict the agent’s sequence of 

decisions. 

 

 
 

Figure 6. TreeMap View 

 

In our work on Madcap, we did not find a perfect way 

to display the log data generated by behavior models. 

However, we discovered that the most effective 

techniques used sophisticated rendering techniques to 

display the entire sequence of decisions made by a 

behavior model with very little detail, but also allowed 

the user to drill down to specific points in the sequence 

to see more detail. Future work needs to be done using 

those broad principles to formulate improved 

visualizations that are more specific to the needs of 

behavior models. 

 

 

CONCLUSION 

 

The problem of allowing subject matter experts to 

author behavior models is very difficult. This is 

primarily because the behavior model authors are asked 

to do tasks that software engineers spend a great deal of 

time learning to do: changing intuitively understood 

conditions into a series of Boolean expressions a 

computer can understand, and then attempting to 

discover why the computer did not get the expected 

answer for our series of Boolean expressions. We have 

attempted to convey some of the many issues involved 

in trying to ease the burden of creating logical 

statements. In addition, our experience with developing 

behavior models for our own agent architecture has 
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convinced us that making simplified model debugging 

tools available in a model authoring tool would make 

the authoring process much more accessible to non-

programmers.  
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