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ABSTRACT 

 

Joint team simulations are usually used to allow a team to practice working together. For example, team training 

simulations at the Payload Operations Center (POC) at NASA Marshall Space Flight Center (MSFC) are held in 

order to train a POC console position. Typically, these training simulations require instructors to help students 

operate the control displays, monitor and evaluate trainee’s performance and provide help and instructional feedback 

to students. Qualified POC operators play the role of other teammates: these teammates are given a script outlining 

the different interactions they will have with the trainee and other teammates and a time line for the actions they 

should take.  Joint team simulations are however scarce and expensive. 

  

In this paper we present CITTP (Computerized Individual Trainer for Team Performance), an intelligent tutoring 

system (ITS) framework for individuals to rehearse their team related tasks using computer based simulations. 

CITTP is used as a cost effective training tool to complement team integration exercises. CITTP concentrates in 

defining three key elements that a team ITS must have: (i) authoring tools to define training scenarios; (ii) intelligent 

simulated teammates; and (iii) spoken natural language capabilities that allow simulated teammates to interact with 

the trainee. We illustrate CITTP when used to train a Payload Rack Officer at MSFC’s POC. A training scenario 

requires the trainee to apply some NASA procedures involving coordinated action with teammates. CITTP provides 

real time feedback, evaluates the trainee performance, executes actions on behalf of the student, and in most cases 

coaches the trainee whenever he makes mistakes.  CITTP’s simulated teammates respond to trainee interactions by 

providing required information or asking the trainee for missing information. Simulated teammates also interact 

among themselves and change the state of the simulation by executing appropriate actions according to NASA 

procedures. 
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INTRODUCTION 

 

Although individual expertise contributes to a great 

extent to team performance, other factors contribute 

significantly as well - factors such as a shared 

awareness of the overall goals or tasks, communication 

skills and protocols, familiarity with other team 

members, their expertise and competency, and 

knowledge of the roles and responsibilities of each 

team member. It is then important to train individuals 

not only on their particular task but in the context of the 

team where those tasks are to be applied. Joint team 

simulations are usually used to allow a team to practice 

working together. However, it is expensive or 

impossible to perform these exercises in actual 

situations, with the actual equipment, software, and 

personnel, not to mention the required instructors to 

evaluate the students’ actions, in addition to the 

necessary facilities. 

 

Using simulation-based training systems to allow 

individuals to rehearse their team related tasks offers a 

cost effective means to complement and to make more 

effective the scarce and expensive team integration 

exercises. However, improvements are needed to fully 

exploit the training opportunities made possible by 

these technologies.  In particular, (i) methods and tools 

are needed which enable instructors and subject matter 

experts to create an intelligent tutoring system (ITS) 

easily, without programming, to monitor and assess the 

student's actions in complex, dynamic situations; (ii) 

methods are also needed to create simulated teammates 

that behave as humans will do when confronting the 

conditions posed by a training scenario; and (iii) 

simulated teammates with spoken dialog capabilities 

are needed so the trainee using the ITS can operate as 

he would do in a real situation. Next, we discuss these 

needs in turn. 

 

Traditional question and answer CBT systems cannot 

differentiate between active and inert knowledge, thus 

missing whether individuals can apply their knowledge 

to make correct decisions in operational circumstances.  

Most ITSs allow the trainee to practice its skills on real 

scenarios.  However, traditional approaches to the 

development of ITSs are hampered by the knowledge 

acquisition bottleneck - the need to construct an explicit 

expert mental model. A practical ITS solution should 

define means for easily authoring scenarios by non-

programmer SMEs who have no detailed understanding 

of the ITS system.  

 

In order to rehearse team exercises, other team 

members are needed. For simple scenarios where at any 

time the student can only perform a limited number of 

actions, it is possible to code in seemingly intelligent 

simulated entities. A simple solution requires an almost 

explicit enumeration of the different ways a scenario 

can evolve. This solution, however, is impractical for a 

large team (e.g., mission operations team) and 

simulation environment where participants have 

multiple goals, multiple ways to achieve these goals, 

and changes in the environment are due to events other 

than a participant’s actions (e.g., a teammate’s action).  

 

The training value of a simulation-based ITS depends 

ultimately on the user’s ability to feel immersed in the 

instructional scenario that it presents. That means being 

able to operate the training application without focusing 

conscious attention on it as a software system. For team 

training, it is important to have a mixed-initiative 

spoken dialog interaction between the trainee and the 

simulated teammates. This natural mode of interaction 

allows trainees users to mentally engage with simulated 

teammates, while keeping their eyes, hands, and focus 

of attention on the training exercise and its 

representation of the situation. These spoken dialog 

facilities in turn impose further requirements in the 

creation of simulated teammates that now should be 

able to understand the trainee utterances and act 

accordingly. 

 

In this paper we describe CITTP (Computerized 

Individual Trainer for Task Performance), a framework 

for developing simulation-based intelligent tutoring 

systems to train individuals on procedural tasks 

requiring team coordination. CITTP focuses on 

extending existing ITS technologies in the following 

three aspects: (i) it supports the definition of training 

scenarios which are more complex and dynamic than 

those supported by previous tutoring systems which 

presume that all changes in the simulation are caused 

by the student, carried out under normal operating 

conditions; (ii) it provides the means to define 
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intelligent simulated teammates; and (iii) it allows the 

student to communicate with the simulated teammates 

using a natural language interface. 

 

RELATED WORK 

 

The idea of training with simulated teammates is not 

new.  In particular, the NAVAIR’s  Synthetic Cognition 

for Operational Team Training (SCOTT) effort has as 

objective “to apply advanced instructional strategies 

and training technology to help aviators practice team 

skills in a deployed simulation environment using 

realistic models of human behavior as simulated 

adversaries, teammates and instructors. The result will 

be a cost-effective and deployable system to enhance 

and maintain crucial aviation skills in fleet operators. 

The product of this effort will be a prototype of an 

intelligent, stand-alone training system for deployed 

and forward deployed aviation teams so individuals and 

teams can practice crucial advanced team skills. The 

prototype will integrate: (i) a capability for simulating 

teammates in a realistic mission simulation; and (ii) 

capabilities for automated scenario generation, 

performance measurement and diagnostic feedback. 

The prototype will incorporate human performance 

modeling techniques and will leverage on advances in 

eye tracking and voice recognition.” (see web site for 

the Research and Development from NAVAIR Orlando 

Training Systems Division).  

 

Different approaches and representation languages have 

been used to model the behavior of simulated 

teammates. For example, [Zachary et al. 2001; Scolaro 

et al. 2002] illustrate how “iGEN-based synthetic 

entities use speech interactions to work with the human 

trainees and each other. This allows the trainee to 

practice specific tasks and teamwork skills. One 

synthetic entity also acts as an instructor and provides 

situation feedback and detailed data for an after-action 

review”. The iGEN cognitive engine is an 

implementation of a broader framework for modeling 

human information processing described in the research 

literature under the name COGNET.  

 

The work described in this paper illustrates how to 

build simulated teammates and tutors for training of 

procedural tasks that require team coordination. It 

mainly uses and enhances two technologies: (i) it uses 

the Task Tutor Toolkit (T3) language [Ong and 

Noneman, 2000] to model the trainee procedures; and 

(ii) it uses Behavior Transition Networks (BTNs) to 

model simulated teammates. T3 and BTNs, in our 

opinion, provide expressive representation languages 

that yet can be used by subject matter experts to create 

scenario based training ITSs. In particular, as illustrated 

next, we show how such languages can be used to 

model speech interactions with simulated teammates. 

 

CITTP FUNCTIONAL DESCRIPTION 

 

In a tutoring session, the trainee is presented with a 

scenario describing a concrete situation where some 

procedures are to be applied. These procedures will 

require the trainee to contact simulated teammates, 

which he will do using a spoken natural language 

interface. The ITS monitors the trainee’s actions and 

evaluates his performance in terms of the principles 

associated with the different procedures that should 

have been applied. In addition to monitoring student 

actions, the tutor monitors the state of the simulation, 

and dynamically determines the expected behavior of 

the trainee. Finally, the tutor can execute actions on 

behalf of the student and coach the trainee whenever he 

performs actions that are not expected according to the 

procedures that apply in the scenario. 

 

1. Coordinate with MCC-H THOR 30 minutes 

before activity. 

2. Inform POD of the activation 5 minutes before 

activity. 

3. Ask CPO enable for commanding.  

4. Disable thermal control on Express Rack. 

5. Adjust EXPRESS Subsystem Valve full Open. 

6. Adjust the RFCA to accommodate the rack 

required flow plus the payload required flow. 

7. Once the RFCA flow has stabilized out and the 

THOR authorizes it, the payload leg valve can be 

opened to its required setting.  

8. Once the flow has stabilized through the 

payload leg valve, the PRO can close the 

subsystem valve to its nominal setting. 

Figure 1.  Simplified outline of the NASA procedure to 

activate a water cooled express subrack payload. 

 

Activating an ExPRESS Rack payload scenario 

We illustrate CITTP when used to train a Payload Rack 

Officer (PRO) at the Payload Operations Center at 

Marshall Space Flight Center (MSFC). The PRO 

should activate an express rack payload following the 

procedure in Figure 1. Such payloads usually support 

some scientific experiment at the International Space 

Station.  A procedure requires the execution of tasks 

within time constraints (see steps 1 and 2 in the figure) 

and the coordination with several teammates, including: 

the Thermal Operations and Resource Officer (THOR), 

the Command and Payload Multiplexer/Demultiplexer 

Officer (CPO), the Payload Operations Director (POD), 

the Payload Designer (PD), the Operations Controller
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(OC) and the flight director (FLIGHT). Note that 

Figure 1 shows the procedure as a sequence of steps. 

However, in practice some steps can be executed in 

parallel and there are different methods to fulfill the 

purpose of each step.  

 

When used for simulation-based training, a NASA’s 

procedure description has to be augmented with the 

pragmatics and human interactions that they suppose. 

For example, (i) to communicate with a teammate, the 

PRO should know in which voice loop to contact the 

teammate, connect to that loop, announce itself on the 

loop, and wait for the teammate to acknowledge the 

PRO on the loop; (ii) the PRO should announce any 

uplink command on the FMT coordination loop (see 

step 6 in Figure 1); (iii) the PRO should check that the 

activation was successful by contacting the Payload 

Developer (PD) to check that they receive telemetry. 

 

Simulator 

Figure 2 shows the instructional interface used to 

support the PRO training. The simulator has interactive 

controls representing those on the actual consoles used 

by the PROs at MSFC. The PRO interacts with these 

controls to check the state of the rack or to command 

the rack. The simulator includes a voice loop that is 

used by the student to communicate with teammates. 

The student must monitor conversations happening in 

more than one voice loop.  To communicate with other 

teammates, the student speaks in a microphone. The 

recognized utterance is shown to the student, and if the 

student agrees with the utterance he will press the talk 

button. The simulator will then send the utterance to the 

appropriate teammates (those teammates listening in 

the loop the student is connected to talk). This extra 

step of pressing the “talk button” is needed because the 

system does not recognize all possible utterances the 

student says or because the system could fail to 

recognize a valid utterance. 1  

 

Authoring student procedures 

During a training scenario the student is expected to 

apply some NASA procedures. These procedures are 

modeled as an ordered constrained set of tasks.  We 

used the Task Tutor Toolkit (T3) language [Ong and 

Noneman, 2000] to define these procedures. This 

language provides the following representation 

constructs: 

 

• Hierarchical decomposition: a task can be 

described in terms of subtasks. For example, to open 

a valve, three subtasks are required: disable the 

thermal control, adjust the RFCA and activate the 

payload (see Figure 3). 

                                                           
1 We used Microsoft Speech recognition engine under 

the “Command and Control” mode. It has a 90% 

recognition rate in our system. 

Figure 2. Instructional interface for training a PRO. The interface provides a simulator of the POC’s consoles, a 

voice loop simulator, an interface to ask for help from the tutor, and a box to display the recognized utterances. 
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• Partially ordered tasks: order constraints among 

subtasks define a partial order. For example, before 

up linking the command to set the payload’s flow 

setpoint, the student should do (in any order) both (i) 

activate the RFCA control and (ii) inform the THOR 

of the activation. 

• Conditional tasks: some tasks should not be done if 

certain conditions are met. For example, if a valve is 

already at the desired setpoint the student should not 

modify the setpoint for the valve.  

• Disjunctive tasks methods: a task might be carried 

on in different ways. For example, the PRO can 

verify that he is enabled for commanding by looking 

at the USL-ER4 Commanding console or by looking 

at the command enablement window for the rack. 

• Loops: a task may be executed repeatedly until some 

condition is satisfied. For example, a teammate must 

be contacted until he responds.  

 

Each task in a procedure is annotated with the feedback 

that should be given to the student: hints on what to do 

(e.g., perform enable/disable thermal control step), how 

to do it (e.g., go to the USL-ER4 Nominal console, 

press the disable button under the thermal control sub 

panel), and why to do the action (e.g., disabling 

thermal control prevents the generation of false 

temperature anomalies alarms).   

 

The tutor can also demonstrate to the student how to 

perform a task (see Figure 4). For this purpose, the 

tutor is represented as any other teammate in the 

system. As explained later, simulated teammates’ 

behaviors are modeled as Behavior Transition 

Networks (BTNs). 

 

Authoring student dialogs 

Student’s interventions on dialogs are described in 

terms of the primitive action say(utterance), where 

utterance is a set of strings covering all the possible 

sentences the student is expected to say at a particular 

time. Each string represents a pattern of sentences that 

the student can pronounce. For example, the string “we 

… adjust the rack flow” will match both sentences “we 

are calling to adjust the rack flow” and “we will adjust 

the rack flow”.  

 

The author of the scenario defines the logic of a dialog 

using ordered constraints, conditional tasks and state 

constraints as illustrated next: 

Figure 3. Representation of the activate payload procedure in Figure 1. The left panel shows the hierarchical 

decomposition of the procedure. Tasks in the procedure consist of subtasks organized by order constraints 

(unordered, partially ordered, ordered) and conditions for their execution (optional, do once, do if, loop). Basic 

tasks represent actions to be done using the simulator (e.g., say an utterance, look at a particular console, disable 

thermal control for a rack). The right panel defines task  information used for coaching. 
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� Task order constraints define the order of expected 

student interventions in a dialog. For example, it is 

possible to represent that the PRO should tell the 

THOR the rack temperature and flow rate before 

asking for his authorization to proceed with the 

activation. The PRO may mention the temperature 

and the flow rate in any order. 

� Conditional tasks can be used to decide the course of 

the dialog based on conditions derived from a 

teammate’s communication and simulation state 

variables.  For example, if the rack is already enabled 

for commanding, then the PRO should not contact 

the CPO asking to enable him. 

� State constraints are used to coordinate interactions 

with teammates. For example, the THOR will 

authorize the payload activation and the PRO should 

acknowledge it. The tutor will check the common 

sense fact that the PRO should acknowledge the 

authorization only after he actually hears it. In this 

case, the action say(“copy …”), used to acknowledge 

the authorization, has associated the state constraint 

“lastUtterance.THOR ==  go”.  

Authoring simulated teammates 

The system does not differentiate between the student 

and simulated teammates, and both obey the same rules 

when interacting with the simulator. Moreover, 

simulated teammates do not know whether they are 

interacting with other simulated teammates. This way, 

the definition of simulated teammates has as much 

detail as the procedure the trainee will follow during 

the scenario. For example, for the simulated POD to 

contact the simulated FLIGHT it will have to join the 

FLIGHT loop to talk and announce itself on that loop.  

 

The behaviors of simulated teammates are modeled 

using Behavior Transition Networks (BTNs). A BTN is 

a kind of state machine where states are behaviors and 

state transitions represent the conditions under which 

an agent will stop executing one behavior and start 

executing another behavior. Basic behaviors (those that 

cannot be described in terms of other behaviors) are 

called actions. Unlike state machines, BTNs provide 

the following constructs proper of programming 

languages: (i) they are hierarchical, (ii) have variables

Figure 4. Definition of the tutor’s behavior showing the student how to open a valve to full open.  The tutor 

flashes the subsystem valve control button on the screen and asks the student to click on it. The tutor waits for 

the student to click the control button (a timeout exists to repeat the instruction if the student does not do as 

told). After the student clicks on the control button, the tutor waits for the counts input window to appear and 

then asks the student to input zero counts, checks the student do so, asks the student to uplink the command, and 

verifies that the student do so. 
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(local memory), (iii) have access to blackboards 

(shared memory), (iv) are polymorphic – the same 

behavior is executed differently by each teammate, and 

(v) can execute arbitrary perceptual or action-oriented 

code (e.g., query a database, interact with the 

simulator). We used the Stottler Henke SimBionic tool 

to create and execute such BTNs [Fu and Houlette, 

2002]. SimBionic allows scenario authors to create 

teammate behaviors by drawing them producing a flow-

chart-like graphical representation (Figure 4). 

Specifically, actions are represented as rectangles, 

behaviors as boldfaced rectangles, conditions as ovals, 

and connectors as lines. Scenario authors can attach as 

many variable assignments, complex expressions, and 

explanatory comments as they like to any of these 

elements. 

 

When modeling using BTNs, authors must decide on 

the basic building blocks (actions, predicates, and key 

behaviors shared by simulated entities), and use those 

building blocks to define specific behaviors for the 

simulated teammates in the scenario. The actual 

modeling process most often follows a top-down 

design, where teammate’s high-level behaviors are 

successively refined. Next we present some actions, 

predicates and behaviors used to model simulated 

teammates in our NASA application. 
 
Simulated teammates actions 

Actions represent the primitive things an agent can do. 

In general, there are two kinds of actions: domain 

independent and domain dependent actions. Domain 

specific actions include: 

• listen_on(loops): after an agent executes this action, 

the simulator will send to the agent all the utterances 

said on the loops the agent connected to.  

• selectUtterance(utterancesPatterns,parameters,chosen

Utterance): this action lets an agent select a sentence 

(chosenUtterance) from a parametrized set of 

possible patterns (utterancesPatterns).  For example, 

if utterancesPatterns = {“$0,1$, $0,1$ here”} and 

parameters={“PD”, “Advasc PD”} then there are 

four possible sentences defined by the patterns, 

Figure 5. Dialogs interventions are conditioned by facts determined at other stages of the dialog. These facts are 

asserted on blackboards shared among teammates. In the example, the PRE_COORDINATION_BOARD is shared 

by the POD, OC and CPO who will join the POD’s loop to talk to the PRO.  The CPO will wait for the POD’s 

activation approval before talking to the PRO to enable him for commanding. The dialog interventions are modeled 

in terms of high-level dialog pattern behaviors (e.g., dialog_2) which hide the logic that the dialog interaction 

supposes. 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005 

2005 Paper No. 2105 Page 8 of 11 

namely, “PD”, “PD here”, “Advasc PD”, and 

“Advasc PD here”. The selectUtterance action will 

select one of these four sentences providing an 

alternative to explicitly typing all the sentences and 

adding some variation to the utterances used by 

simulated teammates. 

 

Domain independent actions exist that let an agent 

access and manipulate system data. For example, the 

action enqueue(event,simulationTime) informs the 

simulator of an event that should happen at the 

specified time. For example, the execution of 

 

enqueue(createSimulationEventUpdateState("ER4.polli

ng.state", "on"), getCurrentSimulationTime()) 

 
states that the polling state on express rack four should 

be set to on right now. For convenience, behaviors are 

created that hide primitive actions like enqueue and 

allow scenario authors to define teammates’ behaviors 

using domain specific terms. For example, executing 

the behavior 

setPollingState(“ER4”,”on”) 

will have the same effect as calling the action above.  

 
Simulated teammates predicates 

Predicates are used to check conditions or to access 

data. As with actions, predicates are domain dependent 

or independent. For example, the predicate 

isExpectedUtterance(context,utterance) lets an agent 

decide whether a given utterance is expected in the 

current context. The domain independent predicate  

getSimulationValue(variableName) returns the current 

state of the given simulation variable.  

 

Simulated teammates behaviors 
On starting a scenario, simulated teammates (agents) 

are created for each position involved in the scenario. 

The tutor itself is also represented by a simulated 

teammate. Each teammate starts running a behavior 

called “MyJob” which describes what the teammate 

will do during the scenario. Using the polymorphism 

facilities of BTNs, the definition of “MyJob” is tailored 

to each position. For the most part, teammates’ 

behaviors follow NASA’s procedures but are 

augmented with dialog capabilities, as discussed below. 

 

Dialogs are represented by BTNs showing the logic of 

the different interventions the agent should carry on 

during the dialog (Figure 5). Each agent uses a 

blackboard where it stores relevant information that 

may affect the dialog execution. The agent uses its 

blackboard to determine whether it should engage in an 

intervention (e.g., to avoid asking for information 

already provided in the dialog).  For example, during 

the initial coordination, the THOR will store in its 

blackboard the temperature and flow rate of the 

payload whenever the student provides this 

information. Should the student not provide the 

information, then the THOR will ask the student for the 

information. As suggested by the example, dialogs 

between the trainee and the simulated teammates may 

take different courses depending mainly on the 

information provided by the trainee.  

 

Many dialogs follow the same pattern of interactions or 

dialog rules. Authors are provided with a library of 

dialog macros (implemented by BTNs) representing 

these common interactions. These macros simplify the 

authoring of dialogs: SMEs just specify some input 

data to the macro (e.g., which sentences to say, which 

sentences to hear) and the macro definition hides the 

logic of the dialog to the SME (e.g., ask a question, 

wait for the answer, if the answer is not given in a 

timely manner then ask again, do not ask more than n 

times). 

 

CITTP ARCHITECTURE 

 

The high-level architecture of the Computerized 

Individual Trainer for Team Performance (CITTP) 

system is shown in Figure 6. The trainee interacts with 

the ITS through an instructional interface which is 

mainly composed of the simulator interface and the 

speech recognition engine.  The instructors interact 

with the ITS through authoring tools used to define the 

datasets (cylinders in the figure) needed by the tutor, 

simulated teammates and the speech recognition 

components. The course manager allows instructors to 

organize scenarios into courses (set of related 

scenarios) and provides facilities to administer these 

courses. The runtime engine provides the 

communication and coordination facilities that allow 

the tutor, simulated teammates and the instructional 

interface to interact with each other.  Next we describe 

the datasets and CITTP’s modules responsibilities. 

 

CITTP Main Datasets 

The main knowledge sources used by the different 

agents in the system are the procedure model, the 

scenario model and the student model. The purpose of 

this knowledge is described next: 

 

• Procedure model: The procedure library codifies the 

acceptable procedures that a trainee should follow, and 

the circumstances under which he may follow them. 

Codification of the protocols for the use of each 
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procedure enables the tutor to determine what is 

expected from the student and to monitor his progress 

during a scenario.  

• Scenario model: This library contains the 

information needed to support simulation-based 

training and intelligent tutoring: representations of the 

acceptable student responses and/or means to 

automatically assess the acceptability and efficacy of 

the student’s responses. A scenario also contains a 

description of the main scenario’s events (e.g., an 

equipment malfunction) and the conditions where 

such events should happen (e.g., start simulation time 

30 minutes before the planned activation and move 

the simulation time to activation time after the PRO 

coordinates activation with the THOR). The tutor 

uses these events to influence the expected behavior 

of the student and simulated teammates by causing 

changes in the simulation state. The behavior of the 

team is controlled by changing the environment 

conditions where the team interacts. This approach 

circumvents the problem of defining tailored 

simulated teammates and changing the simulation to 

support a particular scenario.   

• Student model: The student model stores the main 

aspects describing the student performance as a team 

member. These include the student mastery over 

principles associated with his task or role in the team, 

his expertise on the other tasks or roles within the 

team, and his awareness of other team members’ 

competencies.  

• Domain Ontology: The domain ontology 

represents the concepts and relationships among these 

concepts proper of the application domain. 

Procedures made implicit reference to this ontology 

and assumes that the trainee knows what these basic 

concepts are about. The tutor uses the ontology to 

make basic common-sense inferences that determine 

the expected trainee’s actions. For example, when the 

trainee is to activate the ASVASC payload, the tutor 

knows that this payload is in ExPRESS rack four, and 

that the commanding console for a rack X is USX-

Nominal. From these facts, the tutor infers that the 

expected user action is “lookAtConsole US4-

Nominal”.  

• Speech grammar and utterance mappings:   

Utterance mappings are used by the speech engine to 

associate a content representation with a given 

utterance. This representation is available to the 

simulated entities and the tutor.  Speech grammars 

define the set of sentences that the application will 

recognize. Having such a grammar considerably 

improves the speech recognition rate.  
 
CITTP Architectural Modules 

 
Instructional Interface 

The instructional interface is the system component 

the student interacts with. From the user perspective 

this usually means a GUI composed by the 

simulator’s GUI, the tutor interface, the speech 

recognition and text-to-speech (TTS) facilities. From 

the system perspective, the instructional interface is a 

façade for all these components that provide the basic 

user interaction functionality. Other system 

components communicate with the instructional 

interface by sending messages to it, without directly 

accessing the actual components providing the 

functionality. Dispatching one instructional message 

may involve using different components: for example, 

flashing a control in the simulator’s GUI while 

producing an audio instruction.  

Figure 6. CITTP architecture. Rectangles represent system components and cylinders data sets (see text for 

details). 
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Run Time Engine 

The run time engine acts as a controller providing the 

communication and coordination facilities that allow 

the tutor, simulated teammates and the instructional 

interface to interact with each other. Internally, these 

components implement a common “agent” interface: 

they subscribe to the run time engine which (i) 

distributes available data to interested agents, and (ii) 

provides facilities for running different agents 

executing parallel behaviors in the same thread of 

execution.  

 
Authoring Tools 

The different data sets and modules comprising 

CITTP have corresponding authoring tools. These 

authoring tools are aligned with our emphasis on 

having domain experts and instructors to enter the 

knowledge required by the ITS. Our authoring tool 

allows instructors to create procedures by 

demonstrating them, generalizing the procedure 

demonstration to recognize other valid sequences of 

actions, and annotating the procedure so that the 

tutoring system can identify the principles or concepts 

the student applied correctly or incorrectly [Ong and 

Noneman, 2000]. 

  

Tutor 

The tutor does three main functions: selects an 

appropriate training scenario, monitors the student 

actions while practicing a scenario, and evaluates the 

student actions.  These three functions are described 

next. 

• Scenario selection: the tutor selects a training 

scenario depending on the student model. Different 

strategies are used for this purpose. For example, a 

strategy is to determine the set of procedures that the 

student masters the least and then choose the most 

specific scenario where these procedures are 

illustrated.   
• Monitoring and tutoring: the tutor monitors the 

student actions comparing them to those of the 

procedure being practiced in the scenario. This 

monitoring is not trivial given the expressiveness of 

the task definition language: the student has many 

procedures (or actions) he can perform at the same 

time, there are different ways to perform a procedure, 

and the appropriate actions to perform depend on 

other teammates’ actions (and decisions). The state of 

the monitoring defines the set of expected student 

actions: information used by the tutor to coach the 

student. The tutor coaches the student by providing 

hints, giving explanations on how and why to do an 

action, and demonstrating the execution of an action.  

• Evaluation and debriefing: as a result of 

monitoring the student, the tutor determines which 

student’s actions are right (expected) or wrong 

(unexpected). After the exercise concludes, the tutor 

determines which procedures (and so associated 

principles) the student got right and wrong.  It then 

decides which principles the student has mastered 

based on his performance history with respect to the 

principles.  The debriefing shows the student which 

principles were passed or failed and provides links to 

related material for remediation. 
 
Simulated Teammates 

Simulated teammates execute the procedures 

corresponding to the team role they play. Simulated 

teammates are specified using Behavior Transition 

Networks (BTNs). Dialogs are represented by BTNs 

showing the logic of the different interventions the 

agent should perform during the dialog. Each 

intervention is a dialog itself or a basic intervention 

which can be of three types: a set of utterances to be 

told, a set of utterances to be heard, or an assertion of 

what can be derived from the dialog at the state on 

which the assertion is made. These assertions are 

stored in a blackboard, and referred to by conditional 

transitions in the dialog.  Information derived from 

previous states in the dialog is used by conditions on 

the BTN transitions to decide whether the simulated 

teammate should engage in an intervention. 

 

The speech recognition engine transforms trainee 

spoken utterances into a user defined utterance 

representation. This representation is passed to the 

simulated teammates, who extract information from 

this representation to guide its dialog interventions. 

Which information is expected from a given utterance 

is determined by the current state on the BTN 

defining the dialog. This state provides the context 

needed to interpret a received utterance. This 

approach to natural language understanding presents 

a compromise between a deep understanding and a 

shallow understanding of utterances.  

 

CONCLUSIONS 

 

In this paper we described CITTP (Computerized 

Individual Trainer for Team Performance), an 

intelligent tutoring system (ITS) framework for 

individuals to rehearse their team related tasks using 

computer based simulations. Next we summarize the 

main aspects of the system: 

 

• Tutoring of dynamic complex scenarios: in 

addition to monitoring student actions, the tutor 
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monitors the state of the simulation, and dynamically 

determines the expected behavior of the trainee. 

Changes in the simulation state are not only caused by 

trainee actions, but also by simulated teammate’s 

actions or by the physical laws of the system the 

trainee controls. 

• Procedure representation: the expected student 

behavior is encoded in a language that models tasks as 

partial order of subtasks, and provides constructors to 

represent conditional branching, looping, and 

disjunctive alternatives to perform a task. Our task 

representation language and authoring tools provide a 

crucial trade-off between system usability and 

knowledge representation power.  

• Definition of simulated teammates’ behaviors: 

simulated teammates behaviors are represented using 

Behavior Transition Networks (BTNs), a finite state 

machine-like behavior language. A graphical yet 

powerful programming language is used to define 

these BTNs. This representation mechanism allows 

authors the definition of sophisticated teammate’s 

behaviors including dialogs with the trainee or other 

teammates. Libraries of high-level domain dependent 

behaviors are provided to facilitate the definition of 

teammate behaviors.  

• Dialog templates library: the system provides a 

library of dialog templates representing the most 

common high-level dialog patterns used by simulated 

teammates. The logic of these dialog templates is 

expressed using BTNs that describe the different 

interaction between the participants in the dialog.  

• Access to existing systems: the definition of the 

tutor and simulated teammates can make use of 

existing data sources (e.g., a database) and 

functionalities provided by commercial off-the-shelf 

products (e.g., speech recognition and text-to-speech 

engines, rule-based systems).  

 

FUTURE WORK 

Our current research involves enhancing CITTP in the 

following two aspects: 

 

• Tutoring of error actions: the tutor will coach the 

trainee whenever he performs actions that are not 

expected according to the procedures that apply in the 

scenario. For example, the tutor will be able to detect 

that the student is skipping some steps in the 

procedure, and depending on the requirements of the 

procedure, the tutor will either suggest the trainee to 

execute skipped steps or to continue the procedure 

execution from its current state.  

• Speech recognition, text to speech and dialog 

definition tools: dialogs will be defined by speaking 

the utterances that may occur during the dialog. These 

utterances are used to automatically update the 

grammar used by the speech recognition engine, and 

to update the behavior of simulated teammates and 

the definition of the expected trainee’s dialog 

interventions. Both the tutor and the simulated 

teammates will be able to understand different 

trainee’s spoken utterances that convey the same 

information. When adequate, authors can specify only 

the content of simulated teammates utterances (e.g., 

ask for the flow rate) and the system will 

automatically generate the appropriate utterance (e.g., 

what is the expected flow rate?, which flow rate 

should I expect to see?). 
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