

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 1 of 11

Team Training with Simulated Teammates

Emilio Remolina, Jian Li Alan E. Johnston

Stottler Henke Associates, Inc. NASA Marshall Space Flight Center
San Mateo, California Huntsville, Alabama

{remolina,li}@stottlerhenke.com Alan.E.Johnston@nasa.gov

ABSTRACT

Joint team simulations are usually used to allow a team to practice working together. For example, team training

simulations at the Payload Operations Center (POC) at NASA Marshall Space Flight Center (MSFC) are held in

order to train a POC console position. Typically, these training simulations require instructors to help students

operate the control displays, monitor and evaluate trainee’s performance and provide help and instructional feedback

to students. Qualified POC operators play the role of other teammates: these teammates are given a script outlining

the different interactions they will have with the trainee and other teammates and a time line for the actions they

should take. Joint team simulations are however scarce and expensive.

In this paper we present CITTP (Computerized Individual Trainer for Team Performance), an intelligent tutoring

system (ITS) framework for individuals to rehearse their team related tasks using computer based simulations.

CITTP is used as a cost effective training tool to complement team integration exercises. CITTP concentrates in

defining three key elements that a team ITS must have: (i) authoring tools to define training scenarios; (ii) intelligent

simulated teammates; and (iii) spoken natural language capabilities that allow simulated teammates to interact with

the trainee. We illustrate CITTP when used to train a Payload Rack Officer at MSFC’s POC. A training scenario

requires the trainee to apply some NASA procedures involving coordinated action with teammates. CITTP provides

real time feedback, evaluates the trainee performance, executes actions on behalf of the student, and in most cases

coaches the trainee whenever he makes mistakes. CITTP’s simulated teammates respond to trainee interactions by

providing required information or asking the trainee for missing information. Simulated teammates also interact

among themselves and change the state of the simulation by executing appropriate actions according to NASA

procedures.

ABOUT THE AUTHORS

Emilio Remolina is an Artificial Intelligence research scientist at Stottler Henke Associates, Inc. He received his

Ph.D. in Computer Science, specializing in cognitive robotics from the University of Texas at Austin in 2001. His

graduate work focused on map building, whereby an autonomous robot combines sensory information and actions it

performs in order to build and localize in a map of its environment. Dr. Remolina’s research interests include

intelligent tutoring systems, planning, simulation and common sense reasoning.

Jian Li is an Artificial Intelligence software engineer at Stottler Henke Associates, Inc. He received his Master’s

Degree in Computer Science from the University of San Francisco in 2000. Mr. Li’s field of expertise is software

design and development with a concentration in intelligent tutoring systems, simulation, training systems, and

graphical user interfaces.

Alan E. Johnston is team lead of the NASA training organization responsible for crew and ground support

personnel training for the International Space Station (ISS) payload program. He received his undergraduate and

masters degrees from the University of Tennessee, and has been working at the NASA Marshall Space Flight Center

in Huntsville, Alabama for 22 years. His experience includes 14 years of space flight payload program training and

operations in the Spacelab, MIR, and ISS programs. As team lead of ISS payload training, Mr. Johnston is

responsible for ensuring the astronaut crews and Payload Operations Center ground support personnel are adequately

trained to support payload operations aboard the ISS.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 2 of 11

Team Training with Simulated Teammates

Emilio Remolina, Jian Li Alan E. Johnston

Stottler Henke Associates Inc. NASA Marshall Space Flight Center
San Mateo, California Huntsville, Alabama

{remolina,li}@stottlerhenke.com Alan.E.Johnston@nasa.gov

INTRODUCTION

Although individual expertise contributes to a great

extent to team performance, other factors contribute

significantly as well - factors such as a shared

awareness of the overall goals or tasks, communication

skills and protocols, familiarity with other team

members, their expertise and competency, and

knowledge of the roles and responsibilities of each

team member. It is then important to train individuals

not only on their particular task but in the context of the

team where those tasks are to be applied. Joint team

simulations are usually used to allow a team to practice

working together. However, it is expensive or

impossible to perform these exercises in actual

situations, with the actual equipment, software, and

personnel, not to mention the required instructors to

evaluate the students’ actions, in addition to the

necessary facilities.

Using simulation-based training systems to allow

individuals to rehearse their team related tasks offers a

cost effective means to complement and to make more

effective the scarce and expensive team integration

exercises. However, improvements are needed to fully

exploit the training opportunities made possible by

these technologies. In particular, (i) methods and tools

are needed which enable instructors and subject matter

experts to create an intelligent tutoring system (ITS)

easily, without programming, to monitor and assess the

student's actions in complex, dynamic situations; (ii)

methods are also needed to create simulated teammates

that behave as humans will do when confronting the

conditions posed by a training scenario; and (iii)

simulated teammates with spoken dialog capabilities

are needed so the trainee using the ITS can operate as

he would do in a real situation. Next, we discuss these

needs in turn.

Traditional question and answer CBT systems cannot

differentiate between active and inert knowledge, thus

missing whether individuals can apply their knowledge

to make correct decisions in operational circumstances.

Most ITSs allow the trainee to practice its skills on real

scenarios. However, traditional approaches to the

development of ITSs are hampered by the knowledge

acquisition bottleneck - the need to construct an explicit

expert mental model. A practical ITS solution should

define means for easily authoring scenarios by non-

programmer SMEs who have no detailed understanding

of the ITS system.

In order to rehearse team exercises, other team

members are needed. For simple scenarios where at any

time the student can only perform a limited number of

actions, it is possible to code in seemingly intelligent

simulated entities. A simple solution requires an almost

explicit enumeration of the different ways a scenario

can evolve. This solution, however, is impractical for a

large team (e.g., mission operations team) and

simulation environment where participants have

multiple goals, multiple ways to achieve these goals,

and changes in the environment are due to events other

than a participant’s actions (e.g., a teammate’s action).

The training value of a simulation-based ITS depends

ultimately on the user’s ability to feel immersed in the

instructional scenario that it presents. That means being

able to operate the training application without focusing

conscious attention on it as a software system. For team

training, it is important to have a mixed-initiative

spoken dialog interaction between the trainee and the

simulated teammates. This natural mode of interaction

allows trainees users to mentally engage with simulated

teammates, while keeping their eyes, hands, and focus

of attention on the training exercise and its

representation of the situation. These spoken dialog

facilities in turn impose further requirements in the

creation of simulated teammates that now should be

able to understand the trainee utterances and act

accordingly.

In this paper we describe CITTP (Computerized

Individual Trainer for Task Performance), a framework

for developing simulation-based intelligent tutoring

systems to train individuals on procedural tasks

requiring team coordination. CITTP focuses on

extending existing ITS technologies in the following

three aspects: (i) it supports the definition of training

scenarios which are more complex and dynamic than

those supported by previous tutoring systems which

presume that all changes in the simulation are caused

by the student, carried out under normal operating

conditions; (ii) it provides the means to define

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 3 of 11

intelligent simulated teammates; and (iii) it allows the

student to communicate with the simulated teammates

using a natural language interface.

RELATED WORK

The idea of training with simulated teammates is not

new. In particular, the NAVAIR’s Synthetic Cognition

for Operational Team Training (SCOTT) effort has as

objective “to apply advanced instructional strategies

and training technology to help aviators practice team

skills in a deployed simulation environment using

realistic models of human behavior as simulated

adversaries, teammates and instructors. The result will

be a cost-effective and deployable system to enhance

and maintain crucial aviation skills in fleet operators.

The product of this effort will be a prototype of an

intelligent, stand-alone training system for deployed

and forward deployed aviation teams so individuals and

teams can practice crucial advanced team skills. The

prototype will integrate: (i) a capability for simulating

teammates in a realistic mission simulation; and (ii)

capabilities for automated scenario generation,

performance measurement and diagnostic feedback.

The prototype will incorporate human performance

modeling techniques and will leverage on advances in

eye tracking and voice recognition.” (see web site for

the Research and Development from NAVAIR Orlando

Training Systems Division).

Different approaches and representation languages have

been used to model the behavior of simulated

teammates. For example, [Zachary et al. 2001; Scolaro

et al. 2002] illustrate how “iGEN-based synthetic

entities use speech interactions to work with the human

trainees and each other. This allows the trainee to

practice specific tasks and teamwork skills. One

synthetic entity also acts as an instructor and provides

situation feedback and detailed data for an after-action

review”. The iGEN cognitive engine is an

implementation of a broader framework for modeling

human information processing described in the research

literature under the name COGNET.

The work described in this paper illustrates how to

build simulated teammates and tutors for training of

procedural tasks that require team coordination. It

mainly uses and enhances two technologies: (i) it uses

the Task Tutor Toolkit (T3) language [Ong and

Noneman, 2000] to model the trainee procedures; and

(ii) it uses Behavior Transition Networks (BTNs) to

model simulated teammates. T3 and BTNs, in our

opinion, provide expressive representation languages

that yet can be used by subject matter experts to create

scenario based training ITSs. In particular, as illustrated

next, we show how such languages can be used to

model speech interactions with simulated teammates.

CITTP FUNCTIONAL DESCRIPTION

In a tutoring session, the trainee is presented with a

scenario describing a concrete situation where some

procedures are to be applied. These procedures will

require the trainee to contact simulated teammates,

which he will do using a spoken natural language

interface. The ITS monitors the trainee’s actions and

evaluates his performance in terms of the principles

associated with the different procedures that should

have been applied. In addition to monitoring student

actions, the tutor monitors the state of the simulation,

and dynamically determines the expected behavior of

the trainee. Finally, the tutor can execute actions on

behalf of the student and coach the trainee whenever he

performs actions that are not expected according to the

procedures that apply in the scenario.

1. Coordinate with MCC-H THOR 30 minutes

before activity.

2. Inform POD of the activation 5 minutes before

activity.

3. Ask CPO enable for commanding.

4. Disable thermal control on Express Rack.

5. Adjust EXPRESS Subsystem Valve full Open.

6. Adjust the RFCA to accommodate the rack

required flow plus the payload required flow.

7. Once the RFCA flow has stabilized out and the

THOR authorizes it, the payload leg valve can be

opened to its required setting.

8. Once the flow has stabilized through the

payload leg valve, the PRO can close the

subsystem valve to its nominal setting.

Figure 1. Simplified outline of the NASA procedure to

activate a water cooled express subrack payload.

Activating an ExPRESS Rack payload scenario

We illustrate CITTP when used to train a Payload Rack

Officer (PRO) at the Payload Operations Center at

Marshall Space Flight Center (MSFC). The PRO

should activate an express rack payload following the

procedure in Figure 1. Such payloads usually support

some scientific experiment at the International Space

Station. A procedure requires the execution of tasks

within time constraints (see steps 1 and 2 in the figure)

and the coordination with several teammates, including:

the Thermal Operations and Resource Officer (THOR),

the Command and Payload Multiplexer/Demultiplexer

Officer (CPO), the Payload Operations Director (POD),

the Payload Designer (PD), the Operations Controller

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 4 of 11

(OC) and the flight director (FLIGHT). Note that

Figure 1 shows the procedure as a sequence of steps.

However, in practice some steps can be executed in

parallel and there are different methods to fulfill the

purpose of each step.

When used for simulation-based training, a NASA’s

procedure description has to be augmented with the

pragmatics and human interactions that they suppose.

For example, (i) to communicate with a teammate, the

PRO should know in which voice loop to contact the

teammate, connect to that loop, announce itself on the

loop, and wait for the teammate to acknowledge the

PRO on the loop; (ii) the PRO should announce any

uplink command on the FMT coordination loop (see

step 6 in Figure 1); (iii) the PRO should check that the

activation was successful by contacting the Payload

Developer (PD) to check that they receive telemetry.

Simulator

Figure 2 shows the instructional interface used to

support the PRO training. The simulator has interactive

controls representing those on the actual consoles used

by the PROs at MSFC. The PRO interacts with these

controls to check the state of the rack or to command

the rack. The simulator includes a voice loop that is

used by the student to communicate with teammates.

The student must monitor conversations happening in

more than one voice loop. To communicate with other

teammates, the student speaks in a microphone. The

recognized utterance is shown to the student, and if the

student agrees with the utterance he will press the talk

button. The simulator will then send the utterance to the

appropriate teammates (those teammates listening in

the loop the student is connected to talk). This extra

step of pressing the “talk button” is needed because the

system does not recognize all possible utterances the

student says or because the system could fail to

recognize a valid utterance. 1

Authoring student procedures

During a training scenario the student is expected to

apply some NASA procedures. These procedures are

modeled as an ordered constrained set of tasks. We

used the Task Tutor Toolkit (T3) language [Ong and

Noneman, 2000] to define these procedures. This

language provides the following representation

constructs:

• Hierarchical decomposition: a task can be

described in terms of subtasks. For example, to open

a valve, three subtasks are required: disable the

thermal control, adjust the RFCA and activate the

payload (see Figure 3).

1 We used Microsoft Speech recognition engine under

the “Command and Control” mode. It has a 90%

recognition rate in our system.

Figure 2. Instructional interface for training a PRO. The interface provides a simulator of the POC’s consoles, a

voice loop simulator, an interface to ask for help from the tutor, and a box to display the recognized utterances.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 5 of 11

• Partially ordered tasks: order constraints among

subtasks define a partial order. For example, before

up linking the command to set the payload’s flow

setpoint, the student should do (in any order) both (i)

activate the RFCA control and (ii) inform the THOR

of the activation.

• Conditional tasks: some tasks should not be done if

certain conditions are met. For example, if a valve is

already at the desired setpoint the student should not

modify the setpoint for the valve.

• Disjunctive tasks methods: a task might be carried

on in different ways. For example, the PRO can

verify that he is enabled for commanding by looking

at the USL-ER4 Commanding console or by looking

at the command enablement window for the rack.

• Loops: a task may be executed repeatedly until some

condition is satisfied. For example, a teammate must

be contacted until he responds.

Each task in a procedure is annotated with the feedback

that should be given to the student: hints on what to do

(e.g., perform enable/disable thermal control step), how

to do it (e.g., go to the USL-ER4 Nominal console,

press the disable button under the thermal control sub

panel), and why to do the action (e.g., disabling

thermal control prevents the generation of false

temperature anomalies alarms).

The tutor can also demonstrate to the student how to

perform a task (see Figure 4). For this purpose, the

tutor is represented as any other teammate in the

system. As explained later, simulated teammates’

behaviors are modeled as Behavior Transition

Networks (BTNs).

Authoring student dialogs

Student’s interventions on dialogs are described in

terms of the primitive action say(utterance), where

utterance is a set of strings covering all the possible

sentences the student is expected to say at a particular

time. Each string represents a pattern of sentences that

the student can pronounce. For example, the string “we

… adjust the rack flow” will match both sentences “we

are calling to adjust the rack flow” and “we will adjust

the rack flow”.

The author of the scenario defines the logic of a dialog

using ordered constraints, conditional tasks and state

constraints as illustrated next:

Figure 3. Representation of the activate payload procedure in Figure 1. The left panel shows the hierarchical

decomposition of the procedure. Tasks in the procedure consist of subtasks organized by order constraints

(unordered, partially ordered, ordered) and conditions for their execution (optional, do once, do if, loop). Basic

tasks represent actions to be done using the simulator (e.g., say an utterance, look at a particular console, disable

thermal control for a rack). The right panel defines task information used for coaching.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 6 of 11

� Task order constraints define the order of expected

student interventions in a dialog. For example, it is

possible to represent that the PRO should tell the

THOR the rack temperature and flow rate before

asking for his authorization to proceed with the

activation. The PRO may mention the temperature

and the flow rate in any order.

� Conditional tasks can be used to decide the course of

the dialog based on conditions derived from a

teammate’s communication and simulation state

variables. For example, if the rack is already enabled

for commanding, then the PRO should not contact

the CPO asking to enable him.

� State constraints are used to coordinate interactions

with teammates. For example, the THOR will

authorize the payload activation and the PRO should

acknowledge it. The tutor will check the common

sense fact that the PRO should acknowledge the

authorization only after he actually hears it. In this

case, the action say(“copy …”), used to acknowledge

the authorization, has associated the state constraint

“lastUtterance.THOR == go”.

Authoring simulated teammates

The system does not differentiate between the student

and simulated teammates, and both obey the same rules

when interacting with the simulator. Moreover,

simulated teammates do not know whether they are

interacting with other simulated teammates. This way,

the definition of simulated teammates has as much

detail as the procedure the trainee will follow during

the scenario. For example, for the simulated POD to

contact the simulated FLIGHT it will have to join the

FLIGHT loop to talk and announce itself on that loop.

The behaviors of simulated teammates are modeled

using Behavior Transition Networks (BTNs). A BTN is

a kind of state machine where states are behaviors and

state transitions represent the conditions under which

an agent will stop executing one behavior and start

executing another behavior. Basic behaviors (those that

cannot be described in terms of other behaviors) are

called actions. Unlike state machines, BTNs provide

the following constructs proper of programming

languages: (i) they are hierarchical, (ii) have variables

Figure 4. Definition of the tutor’s behavior showing the student how to open a valve to full open. The tutor

flashes the subsystem valve control button on the screen and asks the student to click on it. The tutor waits for

the student to click the control button (a timeout exists to repeat the instruction if the student does not do as

told). After the student clicks on the control button, the tutor waits for the counts input window to appear and

then asks the student to input zero counts, checks the student do so, asks the student to uplink the command, and

verifies that the student do so.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 7 of 11

(local memory), (iii) have access to blackboards

(shared memory), (iv) are polymorphic – the same

behavior is executed differently by each teammate, and

(v) can execute arbitrary perceptual or action-oriented

code (e.g., query a database, interact with the

simulator). We used the Stottler Henke SimBionic tool

to create and execute such BTNs [Fu and Houlette,

2002]. SimBionic allows scenario authors to create

teammate behaviors by drawing them producing a flow-

chart-like graphical representation (Figure 4).

Specifically, actions are represented as rectangles,

behaviors as boldfaced rectangles, conditions as ovals,

and connectors as lines. Scenario authors can attach as

many variable assignments, complex expressions, and

explanatory comments as they like to any of these

elements.

When modeling using BTNs, authors must decide on

the basic building blocks (actions, predicates, and key

behaviors shared by simulated entities), and use those

building blocks to define specific behaviors for the

simulated teammates in the scenario. The actual

modeling process most often follows a top-down

design, where teammate’s high-level behaviors are

successively refined. Next we present some actions,

predicates and behaviors used to model simulated

teammates in our NASA application.

Simulated teammates actions

Actions represent the primitive things an agent can do.

In general, there are two kinds of actions: domain

independent and domain dependent actions. Domain

specific actions include:

• listen_on(loops): after an agent executes this action,

the simulator will send to the agent all the utterances

said on the loops the agent connected to.

• selectUtterance(utterancesPatterns,parameters,chosen

Utterance): this action lets an agent select a sentence

(chosenUtterance) from a parametrized set of

possible patterns (utterancesPatterns). For example,

if utterancesPatterns = {“$0,1$, $0,1$ here”} and

parameters={“PD”, “Advasc PD”} then there are

four possible sentences defined by the patterns,

Figure 5. Dialogs interventions are conditioned by facts determined at other stages of the dialog. These facts are

asserted on blackboards shared among teammates. In the example, the PRE_COORDINATION_BOARD is shared

by the POD, OC and CPO who will join the POD’s loop to talk to the PRO. The CPO will wait for the POD’s

activation approval before talking to the PRO to enable him for commanding. The dialog interventions are modeled

in terms of high-level dialog pattern behaviors (e.g., dialog_2) which hide the logic that the dialog interaction

supposes.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 8 of 11

namely, “PD”, “PD here”, “Advasc PD”, and

“Advasc PD here”. The selectUtterance action will

select one of these four sentences providing an

alternative to explicitly typing all the sentences and

adding some variation to the utterances used by

simulated teammates.

Domain independent actions exist that let an agent

access and manipulate system data. For example, the

action enqueue(event,simulationTime) informs the

simulator of an event that should happen at the

specified time. For example, the execution of

enqueue(createSimulationEventUpdateState("ER4.polli

ng.state", "on"), getCurrentSimulationTime())

states that the polling state on express rack four should

be set to on right now. For convenience, behaviors are

created that hide primitive actions like enqueue and

allow scenario authors to define teammates’ behaviors

using domain specific terms. For example, executing

the behavior

setPollingState(“ER4”,”on”)

will have the same effect as calling the action above.

Simulated teammates predicates

Predicates are used to check conditions or to access

data. As with actions, predicates are domain dependent

or independent. For example, the predicate

isExpectedUtterance(context,utterance) lets an agent

decide whether a given utterance is expected in the

current context. The domain independent predicate

getSimulationValue(variableName) returns the current

state of the given simulation variable.

Simulated teammates behaviors
On starting a scenario, simulated teammates (agents)

are created for each position involved in the scenario.

The tutor itself is also represented by a simulated

teammate. Each teammate starts running a behavior

called “MyJob” which describes what the teammate

will do during the scenario. Using the polymorphism

facilities of BTNs, the definition of “MyJob” is tailored

to each position. For the most part, teammates’

behaviors follow NASA’s procedures but are

augmented with dialog capabilities, as discussed below.

Dialogs are represented by BTNs showing the logic of

the different interventions the agent should carry on

during the dialog (Figure 5). Each agent uses a

blackboard where it stores relevant information that

may affect the dialog execution. The agent uses its

blackboard to determine whether it should engage in an

intervention (e.g., to avoid asking for information

already provided in the dialog). For example, during

the initial coordination, the THOR will store in its

blackboard the temperature and flow rate of the

payload whenever the student provides this

information. Should the student not provide the

information, then the THOR will ask the student for the

information. As suggested by the example, dialogs

between the trainee and the simulated teammates may

take different courses depending mainly on the

information provided by the trainee.

Many dialogs follow the same pattern of interactions or

dialog rules. Authors are provided with a library of

dialog macros (implemented by BTNs) representing

these common interactions. These macros simplify the

authoring of dialogs: SMEs just specify some input

data to the macro (e.g., which sentences to say, which

sentences to hear) and the macro definition hides the

logic of the dialog to the SME (e.g., ask a question,

wait for the answer, if the answer is not given in a

timely manner then ask again, do not ask more than n

times).

CITTP ARCHITECTURE

The high-level architecture of the Computerized

Individual Trainer for Team Performance (CITTP)

system is shown in Figure 6. The trainee interacts with

the ITS through an instructional interface which is

mainly composed of the simulator interface and the

speech recognition engine. The instructors interact

with the ITS through authoring tools used to define the

datasets (cylinders in the figure) needed by the tutor,

simulated teammates and the speech recognition

components. The course manager allows instructors to

organize scenarios into courses (set of related

scenarios) and provides facilities to administer these

courses. The runtime engine provides the

communication and coordination facilities that allow

the tutor, simulated teammates and the instructional

interface to interact with each other. Next we describe

the datasets and CITTP’s modules responsibilities.

CITTP Main Datasets

The main knowledge sources used by the different

agents in the system are the procedure model, the

scenario model and the student model. The purpose of

this knowledge is described next:

• Procedure model: The procedure library codifies the

acceptable procedures that a trainee should follow, and

the circumstances under which he may follow them.

Codification of the protocols for the use of each

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 9 of 11

procedure enables the tutor to determine what is

expected from the student and to monitor his progress

during a scenario.

• Scenario model: This library contains the

information needed to support simulation-based

training and intelligent tutoring: representations of the

acceptable student responses and/or means to

automatically assess the acceptability and efficacy of

the student’s responses. A scenario also contains a

description of the main scenario’s events (e.g., an

equipment malfunction) and the conditions where

such events should happen (e.g., start simulation time

30 minutes before the planned activation and move

the simulation time to activation time after the PRO

coordinates activation with the THOR). The tutor

uses these events to influence the expected behavior

of the student and simulated teammates by causing

changes in the simulation state. The behavior of the

team is controlled by changing the environment

conditions where the team interacts. This approach

circumvents the problem of defining tailored

simulated teammates and changing the simulation to

support a particular scenario.

• Student model: The student model stores the main

aspects describing the student performance as a team

member. These include the student mastery over

principles associated with his task or role in the team,

his expertise on the other tasks or roles within the

team, and his awareness of other team members’

competencies.

• Domain Ontology: The domain ontology

represents the concepts and relationships among these

concepts proper of the application domain.

Procedures made implicit reference to this ontology

and assumes that the trainee knows what these basic

concepts are about. The tutor uses the ontology to

make basic common-sense inferences that determine

the expected trainee’s actions. For example, when the

trainee is to activate the ASVASC payload, the tutor

knows that this payload is in ExPRESS rack four, and

that the commanding console for a rack X is USX-

Nominal. From these facts, the tutor infers that the

expected user action is “lookAtConsole US4-

Nominal”.

• Speech grammar and utterance mappings:

Utterance mappings are used by the speech engine to

associate a content representation with a given

utterance. This representation is available to the

simulated entities and the tutor. Speech grammars

define the set of sentences that the application will

recognize. Having such a grammar considerably

improves the speech recognition rate.

CITTP Architectural Modules

Instructional Interface

The instructional interface is the system component

the student interacts with. From the user perspective

this usually means a GUI composed by the

simulator’s GUI, the tutor interface, the speech

recognition and text-to-speech (TTS) facilities. From

the system perspective, the instructional interface is a

façade for all these components that provide the basic

user interaction functionality. Other system

components communicate with the instructional

interface by sending messages to it, without directly

accessing the actual components providing the

functionality. Dispatching one instructional message

may involve using different components: for example,

flashing a control in the simulator’s GUI while

producing an audio instruction.

Figure 6. CITTP architecture. Rectangles represent system components and cylinders data sets (see text for

details).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 10 of 11

Run Time Engine

The run time engine acts as a controller providing the

communication and coordination facilities that allow

the tutor, simulated teammates and the instructional

interface to interact with each other. Internally, these

components implement a common “agent” interface:

they subscribe to the run time engine which (i)

distributes available data to interested agents, and (ii)

provides facilities for running different agents

executing parallel behaviors in the same thread of

execution.

Authoring Tools

The different data sets and modules comprising

CITTP have corresponding authoring tools. These

authoring tools are aligned with our emphasis on

having domain experts and instructors to enter the

knowledge required by the ITS. Our authoring tool

allows instructors to create procedures by

demonstrating them, generalizing the procedure

demonstration to recognize other valid sequences of

actions, and annotating the procedure so that the

tutoring system can identify the principles or concepts

the student applied correctly or incorrectly [Ong and

Noneman, 2000].

Tutor

The tutor does three main functions: selects an

appropriate training scenario, monitors the student

actions while practicing a scenario, and evaluates the

student actions. These three functions are described

next.

• Scenario selection: the tutor selects a training

scenario depending on the student model. Different

strategies are used for this purpose. For example, a

strategy is to determine the set of procedures that the

student masters the least and then choose the most

specific scenario where these procedures are

illustrated.
• Monitoring and tutoring: the tutor monitors the

student actions comparing them to those of the

procedure being practiced in the scenario. This

monitoring is not trivial given the expressiveness of

the task definition language: the student has many

procedures (or actions) he can perform at the same

time, there are different ways to perform a procedure,

and the appropriate actions to perform depend on

other teammates’ actions (and decisions). The state of

the monitoring defines the set of expected student

actions: information used by the tutor to coach the

student. The tutor coaches the student by providing

hints, giving explanations on how and why to do an

action, and demonstrating the execution of an action.

• Evaluation and debriefing: as a result of

monitoring the student, the tutor determines which

student’s actions are right (expected) or wrong

(unexpected). After the exercise concludes, the tutor

determines which procedures (and so associated

principles) the student got right and wrong. It then

decides which principles the student has mastered

based on his performance history with respect to the

principles. The debriefing shows the student which

principles were passed or failed and provides links to

related material for remediation.

Simulated Teammates

Simulated teammates execute the procedures

corresponding to the team role they play. Simulated

teammates are specified using Behavior Transition

Networks (BTNs). Dialogs are represented by BTNs

showing the logic of the different interventions the

agent should perform during the dialog. Each

intervention is a dialog itself or a basic intervention

which can be of three types: a set of utterances to be

told, a set of utterances to be heard, or an assertion of

what can be derived from the dialog at the state on

which the assertion is made. These assertions are

stored in a blackboard, and referred to by conditional

transitions in the dialog. Information derived from

previous states in the dialog is used by conditions on

the BTN transitions to decide whether the simulated

teammate should engage in an intervention.

The speech recognition engine transforms trainee

spoken utterances into a user defined utterance

representation. This representation is passed to the

simulated teammates, who extract information from

this representation to guide its dialog interventions.

Which information is expected from a given utterance

is determined by the current state on the BTN

defining the dialog. This state provides the context

needed to interpret a received utterance. This

approach to natural language understanding presents

a compromise between a deep understanding and a

shallow understanding of utterances.

CONCLUSIONS

In this paper we described CITTP (Computerized

Individual Trainer for Team Performance), an

intelligent tutoring system (ITS) framework for

individuals to rehearse their team related tasks using

computer based simulations. Next we summarize the

main aspects of the system:

• Tutoring of dynamic complex scenarios: in

addition to monitoring student actions, the tutor

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Paper No. 2105 Page 11 of 11

monitors the state of the simulation, and dynamically

determines the expected behavior of the trainee.

Changes in the simulation state are not only caused by

trainee actions, but also by simulated teammate’s

actions or by the physical laws of the system the

trainee controls.

• Procedure representation: the expected student

behavior is encoded in a language that models tasks as

partial order of subtasks, and provides constructors to

represent conditional branching, looping, and

disjunctive alternatives to perform a task. Our task

representation language and authoring tools provide a

crucial trade-off between system usability and

knowledge representation power.

• Definition of simulated teammates’ behaviors:

simulated teammates behaviors are represented using

Behavior Transition Networks (BTNs), a finite state

machine-like behavior language. A graphical yet

powerful programming language is used to define

these BTNs. This representation mechanism allows

authors the definition of sophisticated teammate’s

behaviors including dialogs with the trainee or other

teammates. Libraries of high-level domain dependent

behaviors are provided to facilitate the definition of

teammate behaviors.

• Dialog templates library: the system provides a

library of dialog templates representing the most

common high-level dialog patterns used by simulated

teammates. The logic of these dialog templates is

expressed using BTNs that describe the different

interaction between the participants in the dialog.

• Access to existing systems: the definition of the

tutor and simulated teammates can make use of

existing data sources (e.g., a database) and

functionalities provided by commercial off-the-shelf

products (e.g., speech recognition and text-to-speech

engines, rule-based systems).

FUTURE WORK

Our current research involves enhancing CITTP in the

following two aspects:

• Tutoring of error actions: the tutor will coach the

trainee whenever he performs actions that are not

expected according to the procedures that apply in the

scenario. For example, the tutor will be able to detect

that the student is skipping some steps in the

procedure, and depending on the requirements of the

procedure, the tutor will either suggest the trainee to

execute skipped steps or to continue the procedure

execution from its current state.

• Speech recognition, text to speech and dialog

definition tools: dialogs will be defined by speaking

the utterances that may occur during the dialog. These

utterances are used to automatically update the

grammar used by the speech recognition engine, and

to update the behavior of simulated teammates and

the definition of the expected trainee’s dialog

interventions. Both the tutor and the simulated

teammates will be able to understand different

trainee’s spoken utterances that convey the same

information. When adequate, authors can specify only

the content of simulated teammates utterances (e.g.,

ask for the flow rate) and the system will

automatically generate the appropriate utterance (e.g.,

what is the expected flow rate?, which flow rate

should I expect to see?).

ACKNOWLEDGEMENTS

The work reported here was funded by NASA under

SBIR contract NNM04AA83C.

REFERENCES

Fu D., and Houlette R. (2002). "Putting AI in

Entertainment: An AI Authoring Tool for

Simulation and Games". In IEEE Intelligent

Systems, July-August.

Luperfoy S., Domeshek E., Holman E., Struck D. and

Ramachandran S. (2003). "An Architecture for

Incorporating Spoken Dialog Interaction with

Complex Simulations". Proceedings of the

Industry/Interservice, Training, Simulation &

Education Conference (I/ITSEC).

Ong J. and Noneman S. (2000). "Intelligent Tutoring

Systems for Procedural Task Training of Remote

Payload Operations at NASA". Proceedings of the

Industry/Interservice, Training, Simulation &

Education Conference (I/ITSEC).

Scolaro J. and Santarelli, T. (2002). “Cognitive

modeling teamwork, taskwork, and instructional

behavior in synthetic teammates”. Proceedings of

the Eleventh Conference on Computer Generated

Forces and Behavioral Representation. Orlando:

Institute for Simulation and Training.

Zachary W., Santarelli T., Ryder J., Stokes J., Scolaro

D., Lyons D., Bergondy M., and Johnston J.

(2001). “Using a community of intelligent synthetic

entities to support operational team training”.

Proceedings of the Conference of Computer

Generated Forces, Virginia Beach, VA., pages 215-

224

