

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 1 of 7

Intelligent Behaviors for Simulated Entities

Dr. Dan Fu, Ryan Houlette, Jeremy Ludwig
Stottler Henke Associates

San Mateo, CA
fu@stottlerhenke.com, houlette@stottlerhenke.com, ludwig@stottlerhenke.com

TUTORIAL ABSTRACT

In nearly any simulation system, there will be entities – that is, platforms or forces – that are not under the control of a human
participant, either because the necessary personnel are not available or they would be too costly. These entities must mimic
the behavior of the real-world entities that they represent in order to achieve some level of believability in the simulation.
Crafting realistic, intelligent-seeming behaviors for simulated entities is a non-trivial task, however, and there are a variety of
techniques that can be employed. While there exists a diverse array of agent architectures, two common approaches are
cognitive architectures and state machines.

This tutorial provides an introduction to creating intelligent behaviors for simulated entities. An overview of the most
common approaches will be given, and the advantages and disadvantages of each will be discussed. Examples of actual
implemented behaviors will be used to illustrate important concepts. The tutorial will also present a general process for
authoring behaviors, including typical steps and common pitfalls.

Attendees of this tutorial will come away with an overview of the various options available for adding intelligent behaviors
to simulated entities. It will also provide them with the information they need to choose the appropriate approach for their
own applications, along with guidelines on good authoring practices.

ABOUT THE PRESENTERS

Dan Fu joined Stottler Henke six years ago and has worked on several artificial intelligence (AI) systems including AI
authoring tools, wargaming toolsets, immersive training systems, and AI for simulations. Dan was principal investigator on
an intelligent agents project to create AI middleware for simulations and videogames. The result was SimBionic, which
enables users to graphically author entity behavior for a simulation or videogame. Dan holds a B.S. from Cornell Univ. and a
Ph.D. from the Univ. of Chicago, both in computer science.

Ryan Houlette holds a Master's Degree in Computer Science with a concentration in Artificial Intelligence from Stanford
University and a Bachelor of Arts Degree in Computer Science from DePauw University. He has been with Stottler Henke
since 1998. He is the lead architect of the SimBionic product line, which features a behavior engine and graphical authoring
tool allowing non-programmers to specify the behavior of virtual entities within military training simulations. He also
recently led the development of a mixed-initiative intelligent interface framework that includes as a core component a rich
capacity for human interaction and collaboration. Mr. Houlette has been involved in the design and implementation of a
variety of other AI systems at Stottler Henke as well.

Jeremy Ludwig joined Stottler Henke in the fall of 2000 after completing his Master’s Degree in Computer Science, with a
concentration in Intelligent Systems, at the University of Pittsburgh. Recently, Mr. Ludwig has been a part of the SimBionic
project team. He is also the lead developer on a Phase III simulation and training project, deployed at NAS North Island, for
the Navy’s common cockpit helicopter. Other research involves building cognitive models with the ACT-R, EPIC, and Soar
cognitive architectures. Completed projects include developing an ontology, including temporal constraints, for a commercial
project using JESS and designing methods for using individual differences to improve student learning in an intelligent
tutoring system for the Army’s initial entry rotary wing training.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 2 of 7

Intelligent Behaviors for Simulated Entities

Dr. Dan Fu, Ryan Houlette, Jeremy Ludwig
Stottler Henke Associates

San Mateo, CA
fu@stottlerhenke.com, houlette@stottlerhenke.com, ludwig@stottlerhenke.com

TUTORIAL AIM

In nearly any simulation system, there will be entities –
that is, platforms or forces – that are not under the
control of a human participant, either because the
necessary personnel are not available or they would be
too costly. These entities must mimic the behavior of
the real-world entities that they represent in order to
achieve some level of believability in the simulation.
Crafting realistic, intelligent-seeming behaviors for
simulated entities is a non-trivial task, however, and
there are a variety of techniques that can be employed.
While there exists a diverse array of agent
architectures, two common approaches are cognitive
architectures and state machines.

This tutorial provides an introduction to creating
intelligent behaviors for simulated entities. An
overview of the most common approaches will be
given, and the advantages and disadvantages of each
will be discussed. Examples of actual implemented
behaviors will be used to illustrate important concepts.
The tutorial will also present a general process for
authoring behaviors, including typical steps and
common pitfalls.

Attendees of this tutorial will come away with an
overview of the various options available for adding
intelligent behaviors to simulated entities. It will also
provide them with the information they need to choose
the appropriate approach for their own applications,
along with guidelines on good authoring practices.

LEARNING OBJECTIVES

• Gain awareness of the range of available

techniques for developing “intelligent” simulated
entities.

• Understand advantages and disadvantages of each
approach.

• Understand how to implement simple behaviors
using several common approaches.

• Learn a general process for authoring intelligent
behaviors.

BACKGROUND

A large number of agent architectures have been
developed to represent human behavior in simulated
entities, especially for entities situated within military
simulations (Pew & Mavor, 1998). Given that a
comprehensive review of all (or even many) of the
existing architectures is beyond the scope of a tutorial,
this tutorial will instead concentrate on two commonly
used methodologies in behavior modeling: cognitive
architectures and state machines. These two different
paradigms tend to represent the extreme viewpoints for
a variety of modeling dimensions as will be discussed
later.

Byrne writes that “a cognitive architecture is a broad
theory of human cognition based on a wide selection of
human experimental data and implemented as a running
computer simulation program.” Lehman, Laird, and
Rosenbloom (1998) provide a slightly different
definition: “a cognitive architecture is really two things
at once. First, it is a fixed set of mechanisms and
structures that process content to produce behavior. At
the same time, however, it is a theory, or point of view,
about what cognitive behaviors have in common.”

Both of these definitions are based on well defined
psychological theory of cognition, such as the Model
Human Processor (Card, Moran, & Newell, 1983) . The
theory behind a cognitive architecture describes the
various processes involved in cognition, how these
processes are related to and communicate with one
another, and the types of information that these
processes work with.

For this tutorial two different cognitive architectures
will be examined, each based on a slightly different
theory: ACT-R (Anderson et al., 2004) and Soar (Laird
& Congden, 2004). Both of these architectures are
extensively validated, commonly used, and freely
distributed.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 3 of 7

Formally, a finite-state machine (FSM) starts in its
simplest form as a construct from computational theory,
defined as a set of states S, an input vocabulary I, and a
transition function T(s,i) mapping a state and an input
to another state. The machine designates a single initial
state designated as the start state, and zero or more
accepting states. After the FSM processes all input, the
ending state’s identification as an accepting state
dictates whether the machine accepts the input or not.

Less abstractly, an FSM is a concise, non-linear
description of how an object can change its state over
time, possibly in response to events in its environment.
Its practical use departs from the theoretical definition
in four ways. First, because it’s intuitive to think of
each state as representing some desired behavior, each
state has corresponding code so that as the object’s
state changes, its behavior changes accordingly.
Second, the monolithic transition function T resides
across states. Each state can be said to “know” the
conditions under which it should transition to a
different state. Third, the notion of an accepting state is
irrelevant. In its stead, accepting states are generally
interpreted as the end of execution for the FSM. From
here, another FSM gets invoked by the game to handle
further input. Fourth, the input continues indefinitely
until the FSM is no longer needed, or the game ends.

FSMs are a fairly common method of representing
behavior for a wide variety of domains. Because of this,
there exist a relatively large number of FSM packages.
Because we have expertise in this area, we selected the
SimBionic system for use in this tutorial. (Fu, Houlette,
Jensen, & Bascara, 2003) It is an example of a mature
FSM tool designed specifically for modeling intelligent
behavior.

GENERAL METHODOLOGY FOR AUTHORING

INTELLIGENT BEHAVIORS

While this tutorial concentrates on two particular types
of modeling, there are a number of underlying
similarities that apply to most modeling efforts. The
first is what is often referred to as the Cognition-
Artifact-Task triad (Gray & Altmann, 1999). The
capabilities of a model arise from the interaction of
these three distinct components. Cognition is the
abilities and constraints supplied by the agent
architecture. Artifact is what the model interacts with.
In this tutorial, the artifact is generally assumed to be a
simulation of some sort. Task is the specific knowledge
needed to complete a task, such as controlling a bot in a
first-person shooter. This knowledge is written in the
language of the architecture and brought to bear at run-

time when simulating behavior for an entity. A model is
an interactive system that combines all three of these
elements. In building a model, the general steps are to
(1) identify/build a simulator, (2) integrate the agent
architecture with the simulator, (3) write the task
knowledge in the language of the architecture, (4) run
the architecture to generate agent behavior and compare
with desired results, and (5) adjust the task knowledge
and return to (4).

Another, related, similarity is the difficulty of gathering
and verifying task knowledge. It is important to
consider that acquiring and codifying task knowledge
requires knowledge-engineering and model-
programming skills to specify the task, specify the task
environment, and create a set of instructions for a
particular agent architecture that completes the task.
For instance, One of the interesting findings of TacAir-
Soar (Jones et al., 1999) was that roughly 70-90% of
the model development time was spent in the
communication process – moving information from the
subject matter expert to the programmer (Pearson &
Laird, 2004). This includes both time spent in pilot
model creation and pilot model verification for a
number of different mission types. In both cases, the
subject matter expert has the knowledge of what the
model should look like or should be doing but the
developer needs to create/modify the behavior. This
problem has spurred on a number of research projects,
including modification and verification of existing
large rule sets (Pearson & Laird, 2004) and
automatically comparing expert and model behaviors
(Wallace & Laird, 2003).

COGNITIVE ARCHITECTURES

Specific Learning Objectives
• Appreciate some of the features, similarities, and

differences of the Soar and ACT-R architectures.
• Understand the basic methodology for creating

models in both architectures.
• Gain awareness of some of the modern

applications of these two architectures.

Summary of Material

A simple definition for a cognitive architecture is: a
psychological theory realized as a cognitive model
programming language and runtime interpreter. The
programming language dictates the representation of
knowledge and provides a number of basic functional
operators used in model construction. The runtime
interpreter executes cognitive models according to the
underlying theory, supplying input from the outside

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 4 of 7

world (perception), performing perceptual, cognitive,
or motor processing as described by the model and
constrained by the architecture (cognition), and
producing actions (behavior).

For example, here are a few ACT-R operators:
• Check the current contents of a buffer (visual, goal,

long term memory)
• Perform a visual search, or long term memory

search, for an item that matches a description and
insert it into the appropriate buffer

• Change the contents of the current goal
• Press a key on a simulated keyboard
• Add a chunk to long term memory

And some for Soar:
• Propose an operation to perform
• Apply preferences to different available operations
• Perform a selected operation
• Elaborate the current state

These cognitive architecture operators provide
predictive power to cognitive models in part by
constraining what a model can do during its execution
(Kieras, 2003). These constraints help provide
psychological validity for a given model as the
operators are carried out within the runtime portion of
the architecture. The goal is to allow people that aren’t
cognitive psychologists to construct psychologically
valid models using the language of a cognitive
architecture.

In order to make these architectures more concrete, a
brief summary of the architectures is given, followed
by the discussion of a model written in each
architecture.

ACT-R
A much more detailed description of the architecture
than what follows can be found in Anderson et al.
(2004). ACT-R is composed of a set serial modules
running in parallel on a 50 ms clock cycle: perceptual,
motor, goal, declarative memory, and cognitive
(procedural memory). The cognitive module
communicates with the other systems through
independent buffers, each of which holds only “chunk”
at a time (Anderson et al., 2004).

The cognitive module uses the chunk information in the
buffers for task execution. In ACT-R task knowledge is
represented as production rules of the type IF the
buffers contain certain information THEN perform
some operation. During any given cycle, multiple
productions may be able to fire. However, only one of

these productions can fire in a given cycle. A
production is chosen to fire based on an expected utility
equation.

ACT-R also features a symbolic method for procedural
learning called production compilation. This feature
attempts to combine any two productions that occur in
sequence into a single production with the effect of
both productions. These new productions improve
performance in two ways. First, one production is more
efficient than two productions. Second, new
productions can directly encode previously retrieved
declarative memory thus reducing the number of
declarative memory retrievals in the future.

More information on ACT-R, including software,
publications, and models can be found at: http://act-
r.psy.cmu.edu/

ACT-R Models
A verb-tense usage model from the ACT-R tutorial is
examined to illustrate the architecture (Unit 7:
Production Rule Learning). Here is the description of
how the model should work given in the tutorial:

“The learning process of the English past tense
is characterized by the so-called U-shaped
learning in the learning of irregular verbs. That
is, at a certain age children inflect irregular
verbs like “to break” correctly, so they say
“broke” if they want to use the past tense. But at
a later age, they overgeneralize, and start saying
“breaked”. At an even later stage they again
inflect irregular verbs correctly.”

This model contains some production rules that control
verb tense formation and learns others as the model
execution proceeds. The utilities of both kinds of
production rules, which control which production rules
are fired, need to be learned from “hearing” verbs from
the environment. The initial rule set for this model, as
well as learned rules, will be analyzed in the tutorial
along with the ACT-R model development
environment.

While this particular model is a bit academic, other
ACT-R models are more relevant to military
simulations. Some of these include the ACT-
R/IMPRINT hybrid pilot model(Craig et al., 2002) and
software that converts graphical depictions of behavior
to ACT-R models run by Unreal Tournament bots
(Douglass, 2003).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 5 of 7

Soar
The definitive description of the Soar architecture is
provided by Laird & Congden (2004). In their paper
they state that the basic component of the Soar
architecture is the problem space. To achieve goals,
Soar uses operators to move through a problem space
represented by states that consist of attributes with
values and contain a goal and possibly parent and/or
child states. The states, with parents and children, form
a goal hierarchy. Long term memory (LTM) is made up
of productions. It represents general knowledge (such
as knowledge about things in general). Working
memory (WM) contains the current state (such as
knowledge about a particular thing), as well as the state
hierarchy.

The decision cycle applies LTM to the current state.
There are three stages in the decision cycle: propose
operators, select operator, and apply operator. In the
propose operator phase, all elaborations, operator
propositions, and operator comparisons are fired in
parallel. This phase continues until no more
productions apply (quiescence). Then, from the
proposed operators, one is selected.

If an operator cannot be selected an impasse is reached.
To resolve this impasse, a new substate is created in
which Soar attempts to resolve the impasse. This new
state is a copy of the current state, but with a goal of
resolving the impasse. If resolved, Soar’s chunking
mechanism creates a new LTM production to remember
what to do if this impasse arises again. This new
production contains the relevant features of the state
prior to the impasse with the relevant action (e.g.,
operator comparison; operator proposal).

More information on Soar, including software,
publications, and models can be found at:
http://sitemaker.umich.edu/soar

Soar Models
TankSoar is a simple game included in the Soar
distribution. Working through the Soar tutorial
chapters, several different models are made for
controlling the behavior of a tank (Laird, 2004). One of
the more complex TankSoar models will be examined
in this tutorial as an example of developing a Soar
model. Additionally, the modeling environment and
recent improvements to Soar/Simulator integration
technology will be discussed in the tutorial.

With respect to other, less pedantic, Soar models, one
often cited success story of cognitive modeling is
TacAir-Soar (Jones et al., 1999). It is an important
model for a number of reasons. Foremost among these

are the model’s size (over 5200 productions, 400
operators, 100 goals) and successes (types of planes,
number of missions, evaluated performance).

Questions

• What are the basic steps involved in creating a

model with ACT-R? With Soar?
• Where are production rules found in ACT-R? In

Soar?
• What are some of the basic operators used in these

production rules?
• What is the basic representation mechanism for

declarative facts in ACT-R? In Soar?
• Give an example of an ACT-R model and a Soar

model.

STATE MACHINES

Specific Learning Objectives

• Appreciate the tradeoff between models developed

in state machines and models developed in
cognitive architectures.

• Understand the basic methodology for creating
models in SimBionic.

• Be able to construct a simple FSM behavior.

Summary of Material

Various forms of FSMs, an artificial intelligence based
modeling alternative to cognitive architectures, are
often used for developing intelligent agents in the game
industry (Fu & Houlette, 2003). FSM modeling is
especially useful when game character behavior can be
modeled as a sequence of different character “mental-
states”.

Some advantages that hierarchical FSM models (a FSM
that can transfer control to other FSMs) possess over
cognitive models are that they are generally easier to
write, maintain, and verify, as well as being more
efficient at runtime, than cognitive models. There are
also a number of drawbacks to using FSMs. Since they
are not psychologically validated, and generally
provide no psychological constraints, their behavior
often does not accurately model human behavior at
small grain sizes or during human-agent interaction.
They also tend to lack some of the interesting
capabilities associated with cognitive architectures,
such as planning, problem solving, models of
perception and attention, and learning. Based on these
advantages/disadvantages, FSM models tend to be on

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 6 of 7

the opposite end of the spectrum from cognitive
models. FSM models are easier to write and faster to
run, but lack the representational power of cognitive
architectures.

To make the idea of an FSM model more concrete, the
SimBionic architecture will first be examined, followed
by an example model.

SimBionic
The core of SimBionic is a visual authoring tool where
users specify situation assessment, analysis, and
decision-making algorithms by drawing flow chart-like
diagrams that specify sequences of conditions and
actions. That is, in SimBionic the behavior of an entity
is directed by a type of flow chart. The modeling
language also contains advanced features for
cooperating intelligent entities that execute hierarchical,
polymorphic behaviors and share information using
messages and blackboards.

SimBionic behaviors are subprograms that dynamically
determine how each entity selects actions to perform.
Each behavior is comprised of:
• Actions carried out by the entity in the application,

such as Fire weapon.
• Other behaviors which can be invoked by the

current behavior.
• Conditions which check whether the application is

in a specified state. Conditions can invoke
predicates that check the state of the application,
such as ‘Is there a threat nearby?’

• Connectors which connect actions, behaviors, and
conditions to specify their relative order of
execution.

It is fairly simple to integrate SimBionic with an
arbitrary simulator. The simulator, or a wrapper around
the simulator API needs to perform a number of tasks.
The first is instantiating a SimBionic runtime engine.
This involves completing, in the programming
language, methods that perform the conditions and
actions used in the behaviors. The second step is to call
update on the SimBionic engine to advance the
behaviors.

SimBionic Models
For SimBionic, a model that controls terrorist and
counter-terrorist bots in a first person shooter (Counter-
Strike) will be examined in the tutorial. This model will
illustrate the major SimBionic features as well as
discuss the SimBionic development environment.

Questions

• What are some of the tradeoffs between modeling

in SimBionic vs. ACT-R or Soar?
• What is the basic methodology for constructing a

SimBionic model?
• Develop a simple behavior using a flow-chart like

drawing.

CONCLUSION

This tutorial describes human behavior modeling in
three specific environments selected from two quite
different modeling areas. In the course of this
discussion, a number of general issues applicable to
modeling in a variety of agent architectures are
encountered.

ACKNOWLEDGEMENTS

This work was supported in part by Air Force Research
Laboratory grants F30602-00-C-0036 and FA8750-04-
C-0085. Special thanks to David Ross of AFRL/IFSB,
david.ross@rl.af.mil, the AF technical representative.

REFERENCES

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass,

S., Lebiere, C., & Qin, Y. (2004). An
integrated theory of mind. Psychological
Review, 111(4), 1036-1060.

Card, S. K., Moran, T. P., & Newell, A. (1983). The
psychology of human-computer interaction.
Hillsdale, N.J.: L. Erlbaum Associates.

Craig, K., Doyal, J., Brett, B., Lebiere, C., Biefeld, E.,
& Martin, E. A. (2002). Development of a
hybrid model of tractical figher pilot behavior
using IMPRINT task network modeling and
the adatpive control of thought - rational
(ACT-R). Paper presented at the 11th
Conference on Computer Generate Forces and
Behavior Representation.

Douglass. (2003). Modeling of Cognitive Agents.
Retrieved May 22, 2005, from http://act-
r.psy.cmu.edu/~douglass/Douglass/Agents/15-
396.html).

Fu, D., & Houlette, R. (2003). The ultimate guide to
FSMs in games. In S. Rabin (Ed.), AI Game
Programming Wisdom 2.

Fu, D., Houlette, R., Jensen, R., & Bascara, O. (2003).
A Visual, Object-Oriented Approach to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

2005 Tutorial No. 2253 Page 7 of 7

Simulation Behavior Authoring. Paper
presented at the Industry/Interservice,
Training, Simulation & Education Conference.

Gray, W. D., & Altmann, E. M. (1999). Cognitive
modeling and human-computer interaction. In
W. Karwowski (Ed.), International
Encyclopedia of Ergonomics and Human
Factors (pp. 387-391). New York: Taylor &
Francis, Ltd.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999). Automated
intelligent pilots for combat flight simulation.
AI Magazine, 20(1), 27-41.

Kieras, D. E. (2003). Model-based evaluation. In J. A.
Jacko & A. Sears (Eds.), The Human-
Computer Interaction Handbook:
Fundamentals, Evolving Technologies and
Emerging Applications (pp. 1139-1151).
Mahway, NJ: Lawrence Erlbaum Associates.

Laird, J. E. (2004). The Soar 8 Tutorial. Retrieved
August 16, 2004, from
http://sitemaker.umich.edu/soar/soar_software
_downloads

Laird, J. E., & Congden, C. B. (2004). The Soar User's
Manual Version 8.5 Edition 1. Retrieved

August 16, 2004, from
http://sitemaker.umich.edu/soar/soar_software
_downloads

Lehman, J. F., Laird, J. E., & Rosenbloom, P. S.
(1998). A gentle introduction to SOAR: An
architecture for human cognition. In D.
Scarborough & S. Sternberg (Eds.), (2 ed.,
Vol. 4, pp. 212-249). Cambridge, MA: MIT
Press.

Pearson, D., & Laird, J. E. (2004). Redux: Example-
driven diagrammatic tools for rapid
knowledge acquisition. Paper presented at the
Behavior Representation in Modeling and
Simulation, Washington, D.C.

Pew, R. W., & Mavor, A. S. (1998). Modeling human
and organizational behavior : application to
military simulations. Washington, D.C.:
National Academy Press.

Unit 7: Production Rule Learning. Retrieved October
31, 2004, from http://act-
r.psy.cmu.edu/tutorials/unit7.htm

Wallace, S. A., & Laird, J. E. (2003). Comparing
agents and humans using behavioral
bounding. Paper presented at the International
Joint Conference on Artificial Intelligence.

