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TUTORIAL ABSTRACT 
 
In nearly any simulation system, there will be entities – that is, platforms or forces – that are not under the control of a human 
participant, either because the necessary personnel are not available or they would be too costly. These entities must mimic 
the behavior of the real-world entities that they represent in order to achieve some level of believability in the simulation. 
Crafting realistic, intelligent-seeming behaviors for simulated entities is a non-trivial task, however, and there are a variety of 
techniques that can be employed. While there exists a diverse array of agent architectures, two common approaches are 
cognitive architectures and state machines. 
 
This tutorial provides an introduction to creating intelligent behaviors for simulated entities. An overview of the most 
common approaches will be given, and the advantages and disadvantages of each will be discussed. Examples of actual 
implemented behaviors will be used to illustrate important concepts. The tutorial will also present a general process for 
authoring behaviors, including typical steps and common pitfalls. 
 
Attendees of this tutorial will come away with an overview of the various options available for adding intelligent behaviors 
to simulated entities. It will also provide them with the information they need to choose the appropriate approach for their 
own applications, along with guidelines on good authoring practices. 
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Dan Fu joined Stottler Henke six years ago and has worked on several artificial intelligence (AI) systems including AI 
authoring tools, wargaming toolsets, immersive training systems, and AI for simulations. Dan was principal investigator on 
an intelligent agents project to create AI middleware for simulations and videogames. The result was SimBionic, which 
enables users to graphically author entity behavior for a simulation or videogame. Dan holds a B.S. from Cornell Univ. and a 
Ph.D. from the Univ. of Chicago, both in computer science. 
 
Ryan Houlette holds a Master's Degree in Computer Science with a concentration in Artificial Intelligence from Stanford 
University and a Bachelor of Arts Degree in Computer Science from DePauw University.  He has been with Stottler Henke 
since 1998.  He is the lead architect of the SimBionic product line, which features a behavior engine and graphical authoring 
tool allowing non-programmers to specify the behavior of virtual entities within military training simulations.  He also 
recently led the development of a mixed-initiative intelligent interface framework that includes as a core component a rich 
capacity for human interaction and collaboration.  Mr. Houlette has been involved in the design and implementation of a 
variety of other AI systems at Stottler Henke as well.  
 
Jeremy Ludwig joined Stottler Henke in the fall of 2000 after completing his Master’s Degree in Computer Science, with a 
concentration in Intelligent Systems, at the University of Pittsburgh. Recently, Mr. Ludwig has been a part of the SimBionic 
project team. He is also the lead developer on a Phase III simulation and training project, deployed at NAS North Island, for 
the Navy’s common cockpit helicopter. Other research involves building cognitive models with the ACT-R, EPIC, and Soar 
cognitive architectures. Completed projects include developing an ontology, including temporal constraints, for a commercial 
project using JESS and designing methods for using individual differences to improve student learning in an intelligent 
tutoring system for the Army’s initial entry rotary wing training. 
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TUTORIAL AIM  
 
In nearly any simulation system, there will be entities – 
that is, platforms or forces – that are not under the 
control of a human participant, either because the 
necessary personnel are not available or they would be 
too costly. These entities must mimic the behavior of 
the real-world entities that they represent in order to 
achieve some level of believability in the simulation. 
Crafting realistic, intelligent-seeming behaviors for 
simulated entities is a non-trivial task, however, and 
there are a variety of techniques that can be employed. 
While there exists a diverse array of agent 
architectures, two common approaches are cognitive 
architectures and state machines. 
 
This tutorial provides an introduction to creating 
intelligent behaviors for simulated entities. An 
overview of the most common approaches will be 
given, and the advantages and disadvantages of each 
will be discussed. Examples of actual implemented 
behaviors will be used to illustrate important concepts. 
The tutorial will also present a general process for 
authoring behaviors, including typical steps and 
common pitfalls. 
 
Attendees of this tutorial will come away with an 
overview of the various options available for adding 
intelligent behaviors to simulated entities. It will also 
provide them with the information they need to choose 
the appropriate approach for their own applications, 
along with guidelines on good authoring practices. 
 
 

LEARNING OBJECTIVES 
 
• Gain awareness of the range of available 

techniques for developing “intelligent” simulated 
entities. 

• Understand advantages and disadvantages of each 
approach. 

• Understand how to implement simple behaviors 
using several common approaches. 

• Learn a general process for authoring intelligent 
behaviors. 

 

 
BACKGROUND 

 
A large number of agent architectures have been 
developed to represent human behavior in simulated 
entities, especially for entities situated within military 
simulations (Pew & Mavor, 1998). Given that a 
comprehensive review of all (or even many) of the 
existing architectures is beyond the scope of a tutorial, 
this tutorial will instead concentrate on two commonly 
used methodologies in behavior modeling: cognitive 
architectures and state machines. These two different 
paradigms tend to represent the extreme viewpoints for 
a variety of modeling dimensions as will be discussed 
later. 
 
Byrne  writes that “a cognitive architecture is a broad 
theory of human cognition based on a wide selection of 
human experimental data and implemented as a running 
computer simulation program.” Lehman, Laird, and 
Rosenbloom (1998) provide a slightly different 
definition: “a cognitive architecture is really two things 
at once. First, it is a fixed set of mechanisms and 
structures that process content to produce behavior. At 
the same time, however, it is a theory, or point of view, 
about what cognitive behaviors have in common.”  
 
Both of these definitions are based on well defined 
psychological theory of cognition, such as the Model 
Human Processor (Card, Moran, & Newell, 1983) . The 
theory behind a cognitive architecture describes the 
various processes involved in cognition, how these 
processes are related to and communicate with one 
another, and the types of information that these 
processes work with. 
 
For this tutorial two different cognitive architectures 
will be examined, each based on a slightly different 
theory: ACT-R (Anderson et al., 2004) and Soar (Laird 
& Congden, 2004). Both of these architectures are 
extensively validated, commonly used, and freely 
distributed. 
 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005 

2005 Tutorial No. 2253 Page 3 of 7 

Formally, a finite-state machine (FSM) starts in its 
simplest form as a construct from computational theory, 
defined as a set of states S, an input vocabulary I, and a 
transition function T(s,i) mapping a state and an input 
to another state. The machine designates a single initial 
state designated as the start state, and zero or more 
accepting states.  After the FSM processes all input, the 
ending state’s identification as an accepting state 
dictates whether the machine accepts the input or not. 
 
Less abstractly, an FSM is a concise, non-linear 
description of how an object can change its state over 
time, possibly in response to events in its environment. 
Its practical use departs from the theoretical definition 
in four ways.  First, because it’s intuitive to think of 
each state as representing some desired behavior, each 
state has corresponding code so that as the object’s 
state changes, its behavior changes accordingly.  
Second, the monolithic transition function T resides 
across states.  Each state can be said to “know” the 
conditions under which it should transition to a 
different state. Third, the notion of an accepting state is 
irrelevant. In its stead, accepting states are generally 
interpreted as the end of execution for the FSM.  From 
here, another FSM gets invoked by the game to handle 
further input.  Fourth, the input continues indefinitely 
until the FSM is no longer needed, or the game ends.  
 
FSMs are a fairly common method of representing 
behavior for a wide variety of domains. Because of this, 
there exist a relatively large number of FSM packages. 
Because we have expertise in this area, we selected the 
SimBionic system for use in this tutorial. (Fu, Houlette, 
Jensen, & Bascara, 2003) It is an example of a mature 
FSM tool designed specifically for modeling intelligent 
behavior. 
 
  
GENERAL METHODOLOGY FOR AUTHORING 

INTELLIGENT BEHAVIORS 
 

While this tutorial concentrates on two particular types 
of modeling, there are a number of underlying 
similarities that apply to most modeling efforts. The 
first is what is often referred to as the Cognition-
Artifact-Task triad (Gray & Altmann, 1999). The 
capabilities of a model arise from the interaction of 
these three distinct components. Cognition is the 
abilities and constraints supplied by the agent 
architecture. Artifact is what the model interacts with. 
In this tutorial, the artifact is generally assumed to be a 
simulation of some sort. Task is the specific knowledge 
needed to complete a task, such as controlling a bot in a 
first-person shooter. This knowledge is written in the 
language of the architecture and brought to bear at run-

time when simulating behavior for an entity. A model is 
an interactive system that combines all three of these 
elements.  In building a model, the general steps are to 
(1) identify/build a simulator, (2) integrate the agent 
architecture with the simulator, (3) write the task 
knowledge in the language of the architecture, (4) run 
the architecture to generate agent behavior and compare 
with desired results, and (5) adjust the task knowledge 
and return to (4).  
 
Another, related, similarity is the difficulty of gathering 
and verifying task knowledge. It is important to 
consider that acquiring and codifying task knowledge 
requires knowledge-engineering and model-
programming skills to specify the task, specify the task 
environment, and create a set of instructions for a 
particular agent architecture that completes the task. 
For instance, One of the interesting findings of TacAir-
Soar (Jones et al., 1999) was that roughly 70-90% of 
the model development time was spent in the 
communication process – moving information from the 
subject matter expert to the programmer (Pearson & 
Laird, 2004). This includes both time spent in pilot 
model creation and pilot model verification for a 
number of different mission types. In both cases, the 
subject matter expert has the knowledge of what the 
model should look like or should be doing but the 
developer needs to create/modify the behavior. This 
problem has spurred on a number of research projects, 
including modification and verification of existing 
large rule sets (Pearson & Laird, 2004) and 
automatically comparing expert and model behaviors 
(Wallace & Laird, 2003). 
 
 

COGNITIVE ARCHITECTURES 
 

Specific Learning Objectives 
• Appreciate some of the features, similarities, and 

differences of the Soar and ACT-R architectures. 
• Understand the basic methodology for creating 

models in both architectures. 
• Gain awareness of some of the modern 

applications of these two architectures. 
 
Summary of Material 
 
A simple definition for a cognitive architecture is: a 
psychological theory realized as a cognitive model 
programming language and runtime interpreter. The 
programming language dictates the representation of 
knowledge and provides a number of basic functional 
operators used in model construction. The runtime 
interpreter executes cognitive models according to the 
underlying theory, supplying input from the outside 
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world (perception), performing perceptual, cognitive, 
or motor processing as described by the model and 
constrained by the architecture (cognition), and 
producing actions (behavior). 
 
For example, here are a few ACT-R operators: 
• Check the current contents of a buffer (visual, goal, 

long term memory) 
• Perform a visual search, or long term memory 

search, for an item that matches a description and 
insert it into the appropriate buffer 

• Change the contents of the current goal 
• Press a key on a simulated keyboard 
• Add a chunk to long term memory 
 
And some for Soar: 
• Propose an operation to perform 
• Apply preferences to different available operations 
• Perform a selected operation 
• Elaborate the current state 
 
These cognitive architecture operators provide 
predictive power to cognitive models in part by 
constraining what a model can do during its execution 
(Kieras, 2003). These constraints help provide 
psychological validity for a given model as the 
operators are carried out within the runtime portion of 
the architecture. The goal is to allow people that aren’t 
cognitive psychologists to construct psychologically 
valid models using the language of a cognitive 
architecture. 
 
In order to make these architectures more concrete, a 
brief summary of the architectures is given, followed 
by the discussion of a model written in each 
architecture. 
 
ACT-R 
A much more detailed description of the architecture 
than what follows can be found in Anderson et al. 
(2004). ACT-R is composed of a set serial modules 
running in parallel on a 50 ms clock cycle: perceptual, 
motor, goal, declarative memory, and cognitive 
(procedural memory). The cognitive module 
communicates with the other systems through 
independent buffers, each of which holds only “chunk” 
at a time (Anderson et al., 2004).  
 
The cognitive module uses the chunk information in the 
buffers for task execution. In ACT-R task knowledge is 
represented as production rules of the type IF the 
buffers contain certain information THEN perform 
some operation. During any given cycle, multiple 
productions may be able to fire. However, only one of 

these productions can fire in a given cycle. A 
production is chosen to fire based on an expected utility 
equation.  
 
ACT-R also features a symbolic method for procedural 
learning called production compilation. This feature 
attempts to combine any two productions that occur in 
sequence into a single production with the effect of 
both productions. These new productions improve 
performance in two ways. First, one production is more 
efficient than two productions. Second, new 
productions can directly encode previously retrieved 
declarative memory thus reducing the number of 
declarative memory retrievals in the future. 
 
More information on ACT-R, including software, 
publications, and models can be found at: http://act-
r.psy.cmu.edu/  
 
ACT-R Models 
A verb-tense usage model from the ACT-R tutorial is 
examined to illustrate the architecture (Unit 7: 
Production Rule Learning). Here is the description of 
how the model should work given in the tutorial: 
 

“The learning process of the English past tense 
is characterized by the so-called U-shaped 
learning in the learning of irregular verbs. That 
is, at a certain age children inflect irregular 
verbs like “to break” correctly, so they say 
“broke” if they want to use the past tense. But at 
a later age, they overgeneralize, and start saying 
“breaked”. At an even later stage they again 
inflect irregular verbs correctly.” 

 
This model contains some production rules that control 
verb tense formation and learns others as the model 
execution proceeds. The utilities of both kinds of 
production rules, which control which production rules 
are fired, need to be learned from “hearing” verbs from 
the environment. The initial rule set for this model, as 
well as learned rules, will be analyzed in the tutorial 
along with the ACT-R model development 
environment. 
 
While this particular model is a bit academic, other 
ACT-R models are more relevant to military 
simulations. Some of these include the ACT-
R/IMPRINT hybrid pilot model(Craig et al., 2002) and 
software that converts graphical depictions of behavior 
to ACT-R models run by Unreal Tournament bots 
(Douglass, 2003). 
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Soar 
The definitive description of the Soar architecture is 
provided by Laird & Congden (2004). In their paper 
they state that the basic component of the Soar 
architecture is the problem space. To achieve goals, 
Soar uses operators to move through a problem space 
represented by states that consist of attributes with 
values and contain a goal and possibly parent and/or 
child states. The states, with parents and children, form 
a goal hierarchy. Long term memory (LTM) is made up 
of productions. It represents general knowledge (such 
as knowledge about things in general). Working 
memory (WM) contains the current state (such as 
knowledge about a particular thing), as well as the state 
hierarchy.  
 
The decision cycle applies LTM to the current state. 
There are three stages in the decision cycle: propose 
operators, select operator, and apply operator. In the 
propose operator phase, all elaborations, operator 
propositions, and operator comparisons are fired in 
parallel. This phase continues until no more 
productions apply (quiescence). Then, from the 
proposed operators, one is selected. 
  
If an operator cannot be selected an impasse is reached. 
To resolve this impasse, a new substate is created in 
which Soar attempts to resolve the impasse. This new 
state is a copy of the current state, but with a goal of 
resolving the impasse. If resolved, Soar’s chunking 
mechanism creates a new LTM production to remember 
what to do if this impasse arises again. This new 
production contains the relevant features of the state 
prior to the impasse with the relevant action (e.g., 
operator comparison; operator proposal). 
 
More information on Soar, including software, 
publications, and models can be found at: 
http://sitemaker.umich.edu/soar  
 
Soar Models 
TankSoar is a simple game included in the Soar 
distribution. Working through the Soar tutorial 
chapters, several different models are made for 
controlling the behavior of a tank (Laird, 2004). One of 
the more complex TankSoar models will be examined 
in this tutorial as an example of developing a Soar 
model. Additionally, the modeling environment and 
recent improvements to Soar/Simulator integration 
technology will be discussed in the tutorial. 
 
With respect to other, less pedantic, Soar models, one 
often cited success story of cognitive modeling is 
TacAir-Soar (Jones et al., 1999). It is an important 
model for a number of reasons. Foremost among these 

are the model’s size (over 5200 productions, 400 
operators, 100 goals) and successes (types of planes, 
number of missions, evaluated performance). 
 
Questions 
 
• What are the basic steps involved in creating a 

model with ACT-R? With Soar? 
• Where are production rules found in ACT-R? In 

Soar? 
• What are some of the basic operators used in these 

production rules? 
• What is the basic representation mechanism for 

declarative facts in ACT-R? In Soar? 
• Give an example of an ACT-R model and a Soar 

model. 
 
 

STATE MACHINES 
 
Specific Learning Objectives 
 
• Appreciate the tradeoff between models developed 

in state machines and models developed in 
cognitive architectures. 

• Understand the basic methodology for creating 
models in SimBionic. 

• Be able to construct a simple FSM behavior. 
 
Summary of Material 
 
Various forms of FSMs, an artificial intelligence based 
modeling alternative to cognitive architectures, are 
often used for developing intelligent agents in the game 
industry (Fu & Houlette, 2003). FSM modeling is 
especially useful when game character behavior can be 
modeled as a sequence of different character “mental-
states”. 
 
Some advantages that hierarchical FSM models (a FSM 
that can transfer control to other FSMs) possess over 
cognitive models are that they are generally easier to 
write, maintain, and verify, as well as being more 
efficient at runtime, than cognitive models. There are 
also a number of drawbacks to using FSMs. Since they 
are not psychologically validated, and generally 
provide no psychological constraints, their behavior 
often does not accurately model human behavior at 
small grain sizes or during human-agent interaction. 
They also tend to lack some of the interesting 
capabilities associated with cognitive architectures, 
such as planning, problem solving, models of 
perception and attention, and learning. Based on these 
advantages/disadvantages, FSM models tend to be on 
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the opposite end of the spectrum from cognitive 
models. FSM models are easier to write and faster to 
run, but lack the representational power of cognitive 
architectures. 
 
To make the idea of an FSM model more concrete, the 
SimBionic architecture will first be examined, followed 
by an example model. 
 
SimBionic 
The core of SimBionic is a visual authoring tool where 
users specify situation assessment, analysis, and 
decision-making algorithms by drawing flow chart-like 
diagrams that specify sequences of conditions and 
actions. That is, in SimBionic the behavior of an entity 
is directed by a type of flow chart. The modeling 
language also contains advanced features for 
cooperating intelligent entities that execute hierarchical, 
polymorphic behaviors and share information using 
messages and blackboards. 
 
SimBionic behaviors are subprograms that dynamically 
determine how each entity selects actions to perform.  
Each behavior is comprised of: 
• Actions carried out by the entity in the application, 

such as Fire weapon. 
• Other behaviors which can be invoked by the 

current behavior. 
• Conditions which check whether the application is 

in a specified state.  Conditions can invoke 
predicates that check the state of the application, 
such as ‘Is there a threat nearby?’ 

• Connectors which connect actions, behaviors, and 
conditions to specify their relative order of 
execution. 

 
It is fairly simple to integrate SimBionic with an 
arbitrary simulator. The simulator, or a wrapper around 
the simulator API needs to perform a number of tasks. 
The first is instantiating a SimBionic runtime engine. 
This involves completing, in the programming 
language, methods that perform the conditions and 
actions used in the behaviors. The second step is to call 
update on the SimBionic engine to advance the 
behaviors. 
 
SimBionic Models 
For SimBionic, a model that controls terrorist and 
counter-terrorist bots in a first person shooter (Counter-
Strike) will be examined in the tutorial. This model will 
illustrate the major SimBionic features as well as 
discuss the SimBionic development environment. 
 
 

 
Questions 
 
• What are some of the tradeoffs between modeling 

in SimBionic vs. ACT-R or Soar? 
• What is the basic methodology for constructing a 

SimBionic model? 
• Develop a simple behavior using a flow-chart like 

drawing. 
 
 

CONCLUSION 
 
This tutorial describes human behavior modeling in 
three specific environments selected from two quite 
different modeling areas. In the course of this 
discussion, a number of general issues applicable to 
modeling in a variety of agent architectures are 
encountered. 
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