
 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

 
 

A Visual, Object-Oriented Approach to Simulation Behavior Authoring 
 

Daniel Fu, Ryan Houlette, Randy Jensen, Oscar Bascara
Stottler Henke Associates, Inc.

San Mateo, CA
{fu,houlette,jensen}@stottlerhenke.com, ocb1@earthlink.net 

 
 

ABSTRACT 
 
Realistic behaviors for computer-generated forces (CGF) are as crucial as realistic graphics and terrain to the 
creation of high-quality military simulations.  While a variety of simulation-building and 3D-modeling tools exist to 
help with the construction of the latter, the development of CGF behaviors still typically requires programming code 
to be written, either in a standard language such as C++ or Java or in a custom scripting language.  As a result, the 
subject matter experts (SMEs) with the tactical or operational knowledge about how CGF should behave are seldom 
able to directly specify that behavior for a simulation, because they lack the necessary programming skill.  The 
researchers therefore set out to develop an approach to simulation behavior authoring that minimizes the amount of 
programming required while still allowing the creation of sophisticated behaviors.  Two key observations guided 
this effort.  First, there exist already a variety of largely visual “languages” for describing complex sequences of 
actions and conditions – such as flowcharts, finite-state machines, and decision trees – that are either familiar to or 
quickly understandable by non-programmers.  Second, CGF behaviors, particularly at a tactical or operational level, 
can often be adequately specified using such lightweight procedural representations.  The end result was a behavior 
authoring methodology that is founded on a lightweight, visual, procedural approach to modeling CGF behaviors.  
This methodology, which is embodied in a graphical editor and runtime engine, is intended to allow non-
programmers to participate more directly in the behavior authoring process.  It is also designed to encourage good 
development practices such as reuse and top-down design, to which end it borrows several elements of object-
oriented programming, including the notion of behavioral polymorphism.  This paper describes the basic authoring 
methodology and underlying behavior representation.  Examples are drawn from the Counter-Strike simulation 
testbed constructed by the researchers. 
 
 

ABOUT THE AUTHORS 
 
Daniel Fu has been a Project Manager for Stottler Henke Associates, Inc. since September 1998.  He has worked on 
a variety of AI-related projects including AI middleware tools for simulation, tutoring systems for air tactics and 
counter-terrorist intelligence, and link discovery methods for plan detection.  Daniel received a Ph.D. in Computer 
Science from the University of Chicago. 
 
Ryan Houlette is a project manager and lead software engineer at Stottler Henke Associates.  He holds an M.S. in 
Computer Science (Artificial Intelligence) from Stanford University.  He has participated in the development of a 
wide range of AI systems, with a particular focus on autonomous agents and intelligent interfaces.  He is currently 
lead software engineer on an intelligent track identification and analysis system for the Navy. 
 
Randy Jensen is a project manager and software engineer at Stottler Henke.  He has developed numerous 
intelligent tutoring systems for Stottler Henke, as well as authoring tools, simulation controls, and assessment logic 
routines. He holds a B.S. in symbolic systems from Stanford University. 
 
Oscar Bascara is a contracted software engineer for Stottler Henke Associates.  His interests include simulation 
behavior modeling and user interface design.  He holds an M.Eng in electrical engineering from Cornell University 
and an M.A. in mathematics from the University of California at Berkeley. 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

A Visual, Object-Oriented Approach to Simulation Behavior Authoring 
 

Daniel Fu, Ryan Houlette, Randy Jensen, Oscar Bascara
Stottler Henke Associates, Inc.

San Mateo, CA
{fu,houlette,jensen}@stottlerhenke.com, ocb1@earthlink.net 

 
 
 

INTRODUCTION 
 
Realistic behaviors for computer-generated forces 
(CGF) are as crucial as realistic graphics and terrain to 
the creation of high-quality military simulations.  While 
a variety of simulation-building and 3D-modeling tools 
exist to help with the construction of the latter, the 
development of CGF behaviors still typically requires 
programming code to be written, either in a standard 
language such as C++ or Java or in a custom scripting 
language.  As a result, the subject matter experts 
(SMEs) with the tactical or operational knowledge 
about how CGF should behave are seldom able to 
directly specify behaviors for a simulation, because 
they lack the necessary programming skills.  Instead, 
they must provide detailed specifications of the desired 
behavior to simulation programmers, who then translate 
it into code.  This multi-stage development process 
leads to slower simulation development and a greater 
chance for errors in the translation process, which lead 
in turn to higher development costs.  Giving SMEs the 
capacity to directly author CGF behaviors therefore has 
the potential to streamline the simulation development 
process and improve CGF quality as well. 
 
With this goal in mind, the researchers set out to 
develop a behavior authoring approach that minimizes 
the amount of programming required while still 
allowing the creation of sophisticated behaviors.  Two 
key observations guided this effort.  First, there exist 
already a variety of largely visual “languages” for 
describing complex sequences of actions and 
conditions, such as flowcharts, finite-state machines, 
and decision trees, that are either familiar to or quickly 
understandable by non-programmers.  Using such a 
language as the basis for a behavior representation 
would have the advantage of flattening the learning 
curve for behavior authors and also of avoiding 
unnecessary proliferation of terminology and 
formalisms. 
 
Second, although cognitive architectures like SOAR 
and ACT-R provide powerful and flexible frameworks 
for modeling general human behavior, only a fraction 
of their capability is needed to capture many reasonably 

complex real-world behaviors.  CGF behaviors, 
particularly at a tactical or operational level, can often 
be adequately specified using lightweight procedural 
representations such as those mentioned above.  
Because developing behaviors in a cognitive 
architecture requires a level of technical skill that the 
average SME is unlikely to possess (at least without 
special training), it is therefore preferable to make use 
of these lightweight representations whenever possible 
to maximize the SME’s ability to view and manipulate 
behaviors. 
 
This research culminated in a behavior authoring 
methodology that is founded on a lightweight, visual, 
procedural approach to modeling CGF behaviors.  This 
methodology, which is embodied in a graphical editor 
and runtime engine, is intended to allow non-
programmers to participate more directly in the 
behavior authoring process.  It is also designed to 
encourage good development practices such as reuse 
and top-down design, to which end it borrows several 
elements of object-oriented programming.  The 
methodology has been used to create behaviors for a 
number of simulation domains, ranging from the game 
Pac-Man to a full-fledged tactical simulation for 
training naval Tactical Action Officers. 
 
This paper describes the basic authoring methodology 
and its underlying behavior representation.  Examples 
are drawn from the Counter-Strike domain that was 
used as a primary testbed (described below).  The 
results of several informal evaluations of the 
methodology are also presented. 
 
 

COUNTER-STRIKE TESTBED 
 
To serve as a testbed for the behavior representation 
methodology, the researchers implemented a set of 
automated players for the popular multiplayer game 
Counter-Strike, which is a freely-available add-on, or 
“mod”, for the commercial first-person shooter Half-
Life (Counter-Strike, 2003).  Counter-Strike depicts a 
urban hostage-rescue scenario in which one team of 
soldiers attempts to infiltrate an enemy base and rescue 
the hostages held within, who are guarded by a team of 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

opposing soldiers.  These soldiers are typically 
controlled by human players, but it is also possible to 
construct computer-controlled players, known as 
“bots,” that can play against humans or other bots. 
 
Counter-Strike was chosen as the testbed for several 
reasons.  First, it offered a 3D world that was 
continuous in both time and space, which provided a 
rich and challenging environment for automated players 
to act in and respond to.  Second, it presented an 
interesting domain with opportunities for complex 
tactics and team coordination between entities.  Finally, 
the Counter-Strike source code has been made available 
to the public, which greatly simplified the task of 
interfacing the runtime engine to the game. 

 
The researchers developed a custom C++ interface to 
the game that allowed the bots to interact with the game 
engine in exactly the same manner as a human player.  
This permitted them to focus on authoring realistic 
behaviors rather than on low-level implementation 
details.  Once the interface was complete, it was 
possible to construct behaviors for two opposing teams 
of three bots each in approximately four person-weeks.  
The resulting automated teams were capable of 
successfully completing their objectives of either 
rescuing the hostages or preventing them from being 
rescued.  In addition, they performed competently when 
pitted against moderately skillful human players. 

BEHAVIOR REPRESENTATION 
 

The underlying representation for behaviors in this 
methodology is an augmented version of the basic 
finite-state machine called a behavior transition 
network, or BTN.  Like a finite-state machine, a BTN 
consists of a collection of nodes connected by 
conditional transitions.  Each node describes an action 
to be performed by the simulated entity running that 
behavior.  The entity executes only a single node in the 
BTN at a time; this node is designated the current node.  
The current node changes when the conditions attached 
to one of its outgoing transitions become satisfied.  
Hence, a BTN essentially describes a sequence of 
actions and decisions that define how an entity will act 
in the simulation. 
 
The set of actions available for use by a behavior 
author is determined by the nature of the simulation for 
which the behavior is being created.  For example, a 
tactical MOUT simulation for individual soldiers is not 
likely to have actions related to controlling radar 
systems or firing torpedoes.  In addition, actions will 
not be available for real-world capabilities that are 
simply not modeled in the simulation (e.g., fatigue or 
illness).  Note that actions need not always be physical:  
an action can also perform a perceptual or mental task. 
 

Figure 1. The CombatPatrol Behavior Transition Network 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

Figure 1 shows an example of a behavior created for 
Counter-Strike.  Nodes are shown as rectangles, and 
transitions are depicted as chains of ovals and arrows.  
The text labels indicate the action or condition 
associated with each node or transition, respectively.  
The numbers in circles next to transitions indicate the 
order in which the outgoing transitions from a given 
node are checked.  This BTN describes a fairly simple 
combat patrol behavior that causes a simulated soldier 
to move toward a specified destination, keeping an eye 
out for enemy soldiers.  If an enemy is seen or heard, 
the entity will engage and attempt to kill him; if 
injured, the entity will take cover. 
 
While the basic structure of behavior transition 
networks is similar to that of finite-state machines, 
BTNs include a number of extensions to the standard 
finite-state machine model.  For instance, BTNs can 
store information in local variables, enabling transition 
conditions to refer both to the current and previous 

Figure 2.  Behavior Editor Screenshot 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

state
of an entity.  The representation also provides 
mechanisms for inter-entity communication between 
BTNs, allowing for coordinated team behaviors.  In 
addition, BTNs can be hierarchical and polymorphic; 
this aspect will be described in more detail in the 
section on object-oriented authoring. 
 
 

VISUAL AUTHORING 
 

Constructing behaviors using the BTN representation is 
done entirely via a graphical editing tool (see Figure 2).  
There is no scripting or programming language 
involved at any level.  The objective is to provide a 
“canvas” on which a SME can intuitively and rapidly 
sketch out a behavior.  Once an initial behavior has 
been roughed out, the author can then iteratively refine 
it until it matches his mental model of how a given 
simulated entity should act.  The graphical 
representation allows SMEs to see a behavior’s logic at 
a glance, and quickly spot obvious flaws, bugs or other 
difficulties that might be more difficult to find in a 
textually- or code-defined behavior. 
 
This process is facilitated by the consistent and 
pervasive use of standard direct-manipulation user 
interface idioms such as drag-and-drop and right-click 
context menus.  For instance, the user can assemble a 
behavior by simply dragging the desired actions and 
conditions from the left-hand catalog pane onto the 
right-hand “behavior canvas” and then drawing the 
necessary connections between them. 
 
The Runtime Engine 
 
While the graphical editor permits users to create and 
manipulate behaviors, the resulting BTNs are merely 
static specifications.  The accompanying runtime 
engine, however, can use these behavior specifications 
to control CGF within a simulation (see Error! 
Reference source not found.).  A thin C++ interface 
must be implemented to integrate the runtime engine 
with the simulation. 
 
The combination of the editor and runtime engine 
permit the SME to edit a behavior and then 
immediately see the effect of the change in the 
simulation.  This can reduce the time required to fine-
tune behaviors so that they perform exactly as desired.  
A built-in interactive debugging system provides 
additional assistance with finding and fixing problems. 
 
 

OBJECT-ORIENTED BEHAVIORS 

 
As the behaviors developed for a given simulation 
grow in number and increase in complexity, there is 
likely to be a substantial amount of functional 
duplication among them.  Not only is this a waste of 
development effort, but it also generally produces hard-
to-maintain behaviors, since a change to one behavior 
may need to be manually replicated across many others.  
To combat this problem, the researchers borrowed the 
principle of decomposability from object-oriented 
programming.  The result was the notion of 
hierarchical BTNs, in which a node can refer to another 
BTN instead of a simple action.  By allowing BTNs to 
be nested in this manner, a complex behavior can be 
broken up into an assembly of many smaller sub-
behaviors.  This decomposition yields simpler and more 
readable BTNs.  More importantly, it permits 
functional units to be re-used across multiple behaviors 
without duplication.  When a sub-behavior needs 
modification, the author need only change it in a single 
location in order to have that change automatically 
affect all of the behaviors that invoke the sub-behavior.  
A third benefit is the ability to take a top-down 
authoring approach, starting with the highest-level, 
most abstract behavior and gradually adding more and 
more detailed sub-behaviors.  Such an approach is 
particularly useful when the low-level details of a 
behavior have not yet been worked out, but the general 
outline is well-understood. 
 
Hierarchical BTNs rely on a stack-based execution 
model, where an entity’s initial behavior is at the 
bottom of the stack.  Each time a behavior node 
invokes another behavior, a new level is pushed on top 
of the stack containing the newly-invoked BTN. When 
a hierarchical BTN finishes execution, it is popped 
from the stack.  Every BTN on the stack maintains its 
own current node, but only the BTN at the topmost 
level is executed.   
 
For example, in the Counter-Strike testbed, the hostage-

Simulator

Authoring Runtime

Runtime
Engine

Interface

Behavior
Editor

Predicate &
Action

Declarations

Behavior
Library

Predicate &
Action

Definitions

Figure 3.  Components of Authoring System 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

rescue CGF have a high-level behavior 
RescueHostages that describes the entire plan for 
rescuing the hostages: finding the captors’ 
headquarters, breaking into the headquarters, freeing 
the hostages, and escorting them to safety (see Figure 
4).  Each of these sub-goals has a corresponding sub-
behavior, which may in turn have its own sub-sub-
behaviors. 
 

 
Note that although only the topmost BTN on the stack 
is actually executed, outgoing transition conditions are 
checked for every current node in every BTN on the 
stack, starting with the bottom.  If a condition is 
satisfied in a BTN below the top of the stack (say 
EnterHeadquarters), all of the BTNs above it are 
discarded, and execution continues with the newly 
topmost BTN.  This transition mechanism permits a 
kind of prioritization among behaviors whereby a high-
level behavior such as RescueHostages can effectively 
override its sub-behaviors if an important situation 
arises (for example, a sudden enemy attack). 
 
For cases where a high-level behavior needs to 
temporarily interrupt the performance of a lower-level 
sub-behavior, the author may designate a transition as 
an interrupt transition.  When such a transition is 
traversed, it does not cause the BTNs above it on the 
stack to be discarded but instead simply pushes the 
newly-invoked behavior on top of the stack, regardless 
of where on the stack the invoking node lies.  Once the 
interrupting behavior has terminated, it is popped from 
the stack and execution resumes with the previous 
topmost behavior.  In Counter-Strike, for example, a 
soldier may be following a route to the hostage location 
when he suddenly receives enemy fire.  An interrupt 
transition allows him to take cover and return fire until 
the enemy is neutralized, at which point he can pick up 
where he left off along his route. 
 
Behavioral Polymorphism 
 
As the behavior library grows, it often becomes 
desirable to create behaviors that differ only slightly 
from existing behaviors.  Because of the references 
made in a behavior to other behaviors as part of a 
behavior hierarchy, these minor changes introduced at 

an abstract level often entail changes in lower-level 
behaviors.  For example, a user may decide to model 
the morale and fatigue of an opposing force and have 
those attributes affect behavior.  Thus, when the force 
is in conflict with friendly forces, the CombatPatrol() 
behavior would dispatch a specialized version of a 
behavior based on, say, low morale and high fatigue.  
The invoked behavior would be named something 
along the lines of 
“Combat_LowMorale_HighFatigue().”  Most likely, 
this behavior’s sub-behaviors will also need specialized 
versions as well.  The unfortunate result is a bigger 
behavior library with no particular way for the user to 
simplify it through refactoring. 
 
To handle the growth of the behavior library while at 
the same time simplifying the construction of 
specialized behaviors, the representation was extended 
with the concept of polymorphism from object-oriented 
programming.  In this extended representation, a single 
behavior can now possess multiple versions.  Exactly 
which version gets invoked depends on a set of 
hierarchical entity descriptors defined by the author.  In 
this case, “Morale” and “Fatigue” descriptors are 
introduced, each with the possible values shown in 
these two trees: 

A user specializes, or indexes, a behavior graph by 
associating it with exactly one node per tree.  In this 
example, there are twelve possible specializations. 
 
Each entity possesses a set of descriptors as well.  In 
the case of the opposing force, that entity has “low” 
morale and “high” fatigue.  Behavior selection for an 
entity proceeds by always picking the most specific 
version according to the degree of match between the 
entity and behavior indices. For example, if there is a 
behavior version of CombatPatrol() indexed with 
“low” morale and “high” fatigue, then that version will 
be selected for the opposing force.  Note that if no more 
specific match can be found, the “default” behavior 
indexed by the root of the descriptor tree (e.g., 
“Morale”) will be selected.   
 
Although here a total of twelve behavior specializations 
may be defined (counting the roots), in practice not all 

EnterHeadquarters() 

SetExplosives() 

RescueHostages() 

Figure 4. Example of 
Behavior Stack 

Morale Fatigue

highlow highlow medium

Figure 5. Polymorphic Descriptor Hierarchies 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

of these will actually be used.  The descriptor tree 
affords the ability to selectively customize behavior 
through the structured tree hierarchies.  In the above 
example, if a user wants to define only one version of 
the CombatPatrol() behavior, it would be indexed 
using the two roots.  The opposing force would use this 
version of the behavior because a more specific version 
cannot be found.  If the user wants to define a special 
case relevant only when morale is low, then he indexes 
the behavior by picking “low” from the first tree, and 
the root for the second.  The opposing force would then 
use this version instead. 
 
Entities may change their descriptors at any time.  This 
change affects all behavior invocations from that point 
on.  For example, an opposing force that switches its 
morale from low to high and its fatigue from high to 
medium would select a different version of the 
CombatPatrol() behavior, and hence would perform 
differently in the simulation.  Changes to an entity’s 
descriptors do not, however, affect any behavior that 
that entity might already be executing. 
 
 

AUTHORING EXAMPLE 
 

While the visual behavior authoring methodology 
described in this paper had been applied to a variety of 
simulation applications, the set of behaviors developed 
for the Counter-Strike testbed was substantially larger 
and more complex than any the researchers had 
previously authored.  At the same time, the domain was 
not well understood, which made it difficult to 
completely specify in advance the full range of 
behavioral capabilities that would be needed to create 
competent automated players.  As a result, a highly 
iterative and incremental approach to authoring was 
taken. 
 
The researchers began by sketching out a set of two or 
three very high-level behaviors that would serve as an 
outline for the entities’ behavior.  These behaviors 
contained no concrete actions themselves, but were 
instead composed of slightly lower-level behaviors 
whose details we had not yet defined.  Once this top-
level skeleton was roughly complete, the process was 
repeated at the next lower level, and this top-down 
decomposition was recursively continued until the 
behaviors were fleshed out to the level of concrete 
actions.  At this point, it was possible to start testing the 
bots within the game environment and making 
refinements to the behaviors. 
 
During the process of authoring a first draft of the 
behaviors, it was found that the initial vocabulary of 

actions that had been defined was insufficient.  This 
vocabulary was based on the primitive interactions that 
were naturally suggested by the human player’s 
interface to the game – jump, turn, shoot, reload, etc. – 
rather than any anticipation of the concrete actions 
required to implement the target behaviors.  After a first 
pass through the authoring process, the list of actions 
was therefore revised and expanded considerably.  In 
most cases, this was simply to add new capabilities to 
the bots, but sometimes actions were eliminated or even 
broken into several finer-grained actions. 
 
The authoring process up to this point had essentially 
produced behaviors for two distinct entities, one 
rescuing soldier and one guarding soldier.  To 
introduce more variation on the teams, the basic set of 
behaviors was extended polymorphically using 
“Team,” “Role,” and “Attack Style” descriptors (among 
others).  This approach made it easy to add new 
varieties of bots simply by specializing one or two 
behaviors.  This phase of the authoring process can be 
thought of as a lateral expansion or broadening of the 
behavior set, as contrasted with the top-down authoring 
phase, which is focused on completing the chain from 
abstract behaviors to concrete in-game actions. 
 
 

EVALUATION 
 
This approach has been validated with usability studies 
conducted in previous research.  In a project conducted 
for the Navy (Stottler and Vinkavich, 2000), the 
researchers adapted the technology to provide Navy 
instructors with a tool for creating intelligent agent-
based behaviors for use in a tactical simulation trainer.  
Subject matter experts used the visual behavior 
definition environment provided by the tool to specify 
software agents to control enemy platforms as well as 
simulated team members within the simulation.  A 
usability study was conducted with the end users, who 
reported quick authoring times and overall satisfaction 
as a result of the ability to author and modify 
simulation behaviors without relying on programmers.  
Another common response was that without this option, 
they simply could not have devoted the time to learn to 
use a more complex tool, and would therefore have 
been forced to rely on a collaborative implementation 
process with programmers. 
 
An informal study was also recently performed in 
which a version of the BTN graphical editor 
customized for the popular computer game Neverwinter 
Nights™ was made available on the Web (Neverwinter 
Nights, 2002).  Neverwinter Nights™ features a C-like 
scripting language that knowledgeable players can use 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

to create their own game content.  The modified editor 
was intended to make scripting possible for players 
with little or no programming experience.  The 
researchers collected feedback from over a dozen users, 
including  samples of scripts developed using our tool.  
This feedback indicated that users with no knowledge 
of C programming were quickly able to learn to use the 
tool to create complicated scripts that would have 
otherwise been beyond their means. 
 
In addition, use of the behavior editor on in-house 
simulation projects has enabled the researchers to 
reduce the time required to define complex finite state 
machine logic by as much as seventy percent compared 
to standard code-based implementations.  More 
significantly, once the FSMs had been created in the 
visual tool, modifications to their logic required 
approximately ten percent of the time that would have 
been needed to make similar changes in code.  This 
indicates that even for programmers, the use of visual 
authoring environments can result in substantial time 
savings. 
 
 

RELATED WORK 
 
The notion of having a visual representation or 
description of behavior is not new.  One important 
issue to distinguish is the use of a visual representation 
for communication purposes versus implementation.  
The use of graphs to communicate some design or 
behavior is pervasive. 

While much of our early runtime architecture work was 
based on AI robotic literature (Loyall and Bates, 1991; 
Firby, 1987; Georgeff and Lanksy, 1987), the visual 
representations AI researchers have employed in their 
articles are overwhelmingly graph-based (some 
examples are Tate, 1977 and Sacerdoti, 1977), which 
has influenced the way we portray behavior. 

UML state charts are the most well-recognized standard 
for formally describing the states in which a software 
object can be (Fowler, 2000).  A number of 
commercially available object-oriented analysis and 
design tools, such as Rational Rose and Together, offer 
a visual interface for the creation of UML state chart 
diagrams.  These tools, however, were never intended 
to execute the actual state charts created by the user.  
This confines their applicability to requirements and 
design specification. 

For actual visual-to-implementation work, there has 
been past work in the military simulation field, perhaps 

starting with ModSAF (Calder et al, 1993).  Von der 
Lippe et al. (2000) describe the CBT project which 
employs a similar visual representation, but focused on 
command and control for teams of entities.  Thus, the 
behavior definition is of a composite behavior.  
Specialization of behavior happens through “behavior 
roles” so that a set of entities may be participating in 
the same mission, each with its own role in the 
simulation. 

In the robotics field, MacKenzie et al. (1997) describe 
the MISSIONLAB system that allows an end user to 
specify the behavior of multiple robots.  The user does 
this visually using hierarchical state and transition 
links. 
 
 

CONCLUSION 
 

This paper has presented a lightweight visual approach 
to authoring behaviors for computer-generated forces.  
This approach has the potential to put behavior 
authoring capability in the hands of subject matter 
experts who lack the programming skill necessary to 
use existing simulation behavior systems.  Of course, 
very complex behaviors, especially those that are 
largely mental or abstract in nature, are not so easily 
captured by procedural representations, and in such 
cases the additional modeling infrastructure furnished 
by cognitive architectures is called for.  Further work 
must be done to determine when each technique is most 
appropriate. 
 
 

ACKNOWLEDGEMENTS 
 

This research was supported in part by Air Force 
Research Laboratory grant F30602-00-C-0036. 

 
REFERENCES 

 
Calder, R.B.; Smith, J.E.; Courtemanche, A.J.; Mar, 

J.M.F.; and Ceranowicz, A.Z. (1993). “ModSAF 
Behavior Simulation and Control.” Proceedings of 
the Third Conference on Computer Generated 
Forces and Behavioral Representation. 

 
Counter-Strike, (2003).  Counter-Strike Mod Official 

Website.  Retrieved May 15, 2003, from 
http://www.counter-strike.net/. 

 
Firby, R.J. (1987). “An Investigation into Reactive 

Planning in Complex Domains.”  Proceedings of 
AAAI. 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

 
Fowler, M. and Scott, K.  (2000). UML Distilled: A 

Brief Guide to the Standard Object Modeling 
Language. Addison Wesley. 

 
Georgeff, M. and Lansky, A.  (1987). “Reactive 

Reasoning and Planning.” Proceedings of AAAI. 
 
Loyall, B. and Bates, J.  (1991). “Hap: A Reactive, 

Adaptive Architecture for Agents.” CMU Tech 
Report CMU-CS-91-147. 

 
MacKenzie, D., Arkin, R.C., and Cameron, J.  (1997). 

“Multiagent Mission Specification and Execution.” 
Autonomous Robots, 4(1), 29-57. 

 
Neverwinter Nights, (2002).  Neverwinter Nights 

Official Community Website.  Retrieved June 5, 
2003, from  http://nwn.bioware.com/. 

 
Sacerdoti, E.D. (1977). A Structure for Plans and 

Behavior.  American Elsevier, New York. 
 
Stottler, R. H. and Vinkavich M. (2000). “Tactical 

Action Officer Intelligent Tutoring System (TAO 
ITS).”  Proceedings of I/ITSEC 2000. 

 
Tate, A. (1977). “Generating Project Networks.” 
IJCAI. 
 
Von Der Lippe, S., McCormack, J. S., and Kalphat, M. 

(2000). “Embracing Temporal Relations and 
Command and Control in Composable Behavior 
Technologies.” Proceedings of the Ninth 
Conference on Computer Generated Forces and 
Behavioral Representation.

 
 
 
 


