

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

An Architecture for Incorporating Spoken Dialog Interaction

with Complex Simulations

Susann Luperfoy, Eric Domeshek, Elias Holman and David Struck
Stottler Henke Associates, Inc.

Arlington, MA 02474
{luperfoy, domeshek, holman, struck}@stottlerhenke.com

ABSTRACT

Simulation systems that pervade military training, mission rehearsal, and tactical decision making have successfully
leveraged advances in computer hardware and M&S software to capture key properties of the represented world.
These sophisticated systems present lifelike behavior to the user but are often difficult to use and time-consuming to
learn, so that human interaction with simulation-based training applications remains awkward. This is especially
true when the training system has been designed from the perspective of the backend software application rather
than the human user or the cognitive task in which the user will be engaged. The result is that students are unable to
lose themselves in the simulated scenario because the training system itself demands their conscious attention. For a
subset of simulation-based applications the solution will involve mixed-initiative natural language dialog that lets
the human mentally ‘penetrate’ the user interface to communicate directly with synthetic agents. Spoken natural
language dialog in particular, lets the user control the simulation while keeping their eyes, hands, and focus of
attention on the exercise and its representation in the simulation. This paper describes a software architecture for
integrating mixed-initiative spoken dialog interaction into simulation systems, and illustrates one use of that
architecture to integrate a dialog-enabled ITS with the multiplayer online game NeverWinterNights™.

ABOUT THE AUTHORS
Susann Luperfoy is a Principal Scientist at Stottler Henke Associates, Inc. Her PhD research in knowledge-based
mixed-modality dialog was conducted at MCC and the University of Texas in Austin. She has over fifteen years
leadership experience in AI research and commercial software delivery, has authored over thirty technical
publications, delivered over forty invited lectures, and organized several workshops. She was Founding President of
SIGDIAL, an international special interest group for exchanging dialog data, analyses, analysis tools and
techniques, and for standardization of data encoding. She currently builds interactive dialog agents for intelligent
applications.

Eric Domeshek is an AI Project Manager at Stottler Henke. His PhD from Yale University involved research on
cognitive modeling and technology, and development of Case Based Reasoning (CBR). As Research Faculty at the
Georgia Institute of Technology he helped launch the EduTech Institute and directed work on educational
applications of AI and CBR. He continued this work as faculty at Northwestern University’s Institute for the
Learning Sciences and at Stottler Henke where he currently leads a variety of AI and ITS development projects.

Elias Holman is an AI Software Engineer at Stottler Henke. He received his BA in Music Technology from
Oberlin College, and is pursuing an Masters degree in Educational Technology at the Harvard University School of
Education. Over the last three years, Mr. Holman has worked on several ITS projects at Stottler Henke, as well as
projects focused on web-based team collaboration and human-machine dialog interaction.

David Struck is an AI Programmer at Stottler Henke. He received his BA in Computer Science from Boston
College, and has contributed to implementation of several ITS projects at Stottler Henke Associates.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

An Architecture for Incorporating Spoken Dialog Interaction

with Complex Simulations

Susann Luperfoy, Eric Domeshek, Elias Holman, & David Struck
Stottler Henke Associates, Inc.

Arlington, MA 02474
{luperfoy, domeshek, holman, struck@stottlerhenke.com

MOTIVATION
The training value of a simulation-based Intelligent
Tutoring System (ITS) depends ultimately on the
user’s ability to feel immersed in the instructional
scenario that it presents. That means being able to
operate the training application without focusing
conscious attention on it as a software system. User-
centered engineering (UCE) techniques address this
need by guiding the design of training systems that
are natural for the learner to use and better optimized
to the cognitive tasks that will result in retention and
transfer of learning. For some applications, mixed-
initiative spoken dialog interaction between human
and synthetic dialog agents (DA’s) will be a key
component of the user-centered design. The dialog
mode of interaction supports the train-as-we-fight
objective by allowing users to engage the synthetic
agents representing team mates, prisoners of war, and
others in a way that feels natural and intuitive.
Further, the speech modality lets the user control the
simulation while keeping their eyes, hands, and focus
of attention on the training exercise and its
representation in the simulation.

OVERVIEW

Stottler Henke Associates has adapted a tested
architecture for knowledge based spoken dialog
systems (Luperfoy, et al., 1998) to construct
simulation-based training systems with mixed-
initiative dialog. This paper describes that generic
architecture and the reusable components that are
instantiated for each new dialog application. We
then report on the process and result of applying that
architecture to one training system that integrates
dialog-enabled ITS technology with a popular on-line
game called NeverWinterNights™.

This paper is not about the pedagogical theory
chosen for this training application instance or the
advantages of the resulting ITS for training
effectiveness; it is about the architecture and the
procedure for constructing a system to instantiate any
pedagogy requiring dialog. We sketch the basic
structure of the interaction only to situate our

discussion of the architecture that supports it. In the
military scenario selected, a human player assumes
the role of a Commanding Officer (CO) and controls
the corresponding Player Character (PC) that engages
in spoken dialog with Non-Player Characters (NPC)
representing the Executive Officer (XO) and
subordinate staff. When the PC is in sufficient
proximity with a pair of NPCs engaged in
conversation, their voices become audible so that the
player overhears them. Salient aspects of their
communicative and non-communicative behavior get
recorded as part of the dynamic situational context of
the training scenario. For this example
demonstration we are working in the domain of
health, safety, and medical risks, according to
customer1 need for distributed training systems that
help military staff overcome psychological framing
effects that can steer decisions about lifestyle risks.

In the remainder of this document we define the
categories of computational dialog processing, derive
functional requirements dictated by those categories,
present a software architecture that supports those
functions, and illustrate the process and result of
applying the architecture to the conversion of a
COTS multiplayer online game into a platform for
designing innovative lessons using a simulation-
based ITS with dialog-enabled animated 3D agents.

HUMAN-MACHINE DISCOURSE
The range of discourse phenomena that can occur in
a multi-user simulation or game environment used
for instruction can be classified into six categories of
computational dialog functionality. (1) Human-
system dialog lets the user command and control the
application using a dialog-based user interface, e.g.,
“Create another enemy tank battalion”, or “Zoom in
on that bridge”, or “Bring up the topological map
overlay.” (See Walker, et al. 2002 for a comparative

1 This work was supported by OSD and ONR under
the direction of Dr. R. Perez. The instructional need
was brought to our attention by Cmdr. R. Shaffer of
the Naval Health Resource Center.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

evaluation of several human-system dialog interface
designs.) (2) Computer-mediated human-human
dialog lets players, instructors, operator/controllers,
and observers communicate with each other in the
context of the simulated scenario (Miller, et al.
1996). (3) Automated analysis of those human-
human dialogs either in real time or retrospectively
(Jurafsky, et al., 1997; Glass, et al., 2002) can assist
in evaluation of student and/or training system
performance. These analyses in (3) can also be used
to model spontaneous human-human dialog for a
fourth category of computational dialog, namely, (4)
computer-generated synthetic agent dialog that is
overheard by the user as part of the situational
context of the unfolding scenario, but involves no
human speaker. Examples include synthetic dialog
between dueling chat bots available on in EMACS or
on the worldwide web. (5) Human-DA (Dialog
Agent) dialog lets players engage the dialog-enabled
synthetic agents of the simulation world and hear
contextually-appropriate DA responses, e.g., “Fifth
platoon, decrease speed by two zero miles per hour”,
“Yes, Sir. Fifth platoon decreasing speed”, “First
platoon, what is your position?” (Webber et al.,
1995; Goldschen, et al. 1998; Nielsen, et al., 2002).
(6) Human-tutor dialog is a related form of human-
machine dialog that provides a personification of the
ITS as a disembodied coach (Luperfoy, 1996) or,
depending on the application constraints, as a Non-
Player Character (NPC) with an overt screen
presentation (Graesser, et al., 2002). The dialog-
enabled tutor can offer ‘over-the-shoulder’ verbal
coaching during the exercise, or it can collect and
save observations for After-Action Review when it
can engage the user in meta-level dialog about the
lesson, the scenario, or the user’s performance.

While the implementation project referenced in this
paper involves all six forms of dialog processing, we
restrict this discussion to categories (5) and (6) to
illustrate the human-DA dialog between a
NeverWinterNights™ player and the dialog-enabled
NPC that occupies the role of the player’s XO.

DIALOG AGENT CAPABILITIES
In this section we define the three component
capabilities of an intelligent DA. These three
modules, Context Tracking, Pragmatic Adaptation,
and Dialog Management constitute the central
contribution of this paper to ITS engineering.

Context Tracking
Humans as Context Trackers
Spontaneous human language contains context-
dependent referring expressions, including pronouns,

indexical references (“tomorrow”, “us”, “that
room”), elliptical phrases (“No, it doesn’t.”), definite
noun phrases, and other forms that receive their
semantics in full or in part from the context of their
occurrence. (See Appendix for a table of examples.)
In order to interpret these dependent forms when
they occur, humans mentally track the salient
elements of the communicative context and the
perceptually shared situational context that can
sponsor the occurrence of subsequent dependent
forms. An oversimplified description of the tracking
process is that when we hear a new utterance we
consult our context representation to find sponsors
for any dependent forms in the new utterance, and we
add new sponsors to the context representation to
prepare for subsequent dependent forms. In human
dialog, the speaker’s context includes their
conceptual model of the state of the listener. That
model of the listener guides the speaker’s
composition of each new dialog utterance. In return,
the human listener will often assist the speaker by
offering verbal or nonverbal indicators of how well
their participation in the dialog is going, e.g.,
nodding, puzzled facial expression, or vocal
backchanneling (“I see,” “uh-huh,” “Go on.”).

Thus, humans come to the human-machine situation
well equipped as listeners and speakers, able to hold
up their end of a cooperative mixed-initiative dialog.
They also bring valuable expectations of how the DA
will behave. We use the human dialog behavior as a
development time model to guide our design of a
cooperative DA, and at runtime we rely on the mental
and communicative behavior of the user to reinforce
the DA’s algorithms for updating context
information.

Dialog Agents as Context Trackers
The DA in type (5) and (6) dialog, can be viewed as
a mediator between the human user and the backend
software application. Its job is to make sense of each
new human input (statement, query, or command)
relative to its own internal representation of the
context; then to translate the input into a well-formed
command in the language of a backend application.
It updates its internal context representation with the
input communicative event and issues the backend
command. Next the DA intercepts the backend
response to that command, translates the response
into a context-appropriate natural language output
utterance (statement, question, suggestion) for the
user, and finally, updates its internal context
representation with that output communicative event
to prepare for the next user input.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

For simulation-based ITS dialog, the context tracker
records salient situational as well as communicative
information. The DA needs awareness of the backend
simulation/game, its possible states, error conditions,
its syntax for well-formed input commands, its rules
of engagement, as well as events and state changes
that happen to occur at runtime.

Consider the following hypothetical input command
to a game-based ITS, “Don’t do that. Just tell her to
go get it and send it to him on the other bridge.” To
interpret this input utterance as the user’s desire that
you command Olivia to locate a particular vehicle
and report it to Samuel who is on a bridge other than
the bridge in focus, the DA will consult its context
representation to find at minimum, entities for Olivia,
Samuel, the particular vehicle in question, and the
spatial layout and location of entities, including at
least two bridges, the speaker (PC) and the embodied
DA (NPC) itself. To serve as a personified tutor, the
DA must also have access to the evolving student
model, the training objectives, the curriculum model,
remediation options, and other knowledge sources
required to deliver the desired pedagogical approach.

The combined situational and communicative context
is initialized at the start of the session and then all
salient communicative and situational events/state
changes that occur are recorded by the context
tracker during the exercise. A DA that maintains
even limited versions of the above forms of
contextual information can be construed as having
‘beliefs’ about the external world, the user, the
backend application, and about the dialog itself.

Pragmatic Adaptation
Pragmatic adaptation is one way humans and
synthetic DA’s demonstrate intelligent behavior in
dialog: humans and DA’s use pragmatic knowledge
and the current context to supplement a literal
interpretation of each communicative act in order to
arrive at an actionable understanding of the speaker’s
underlying intent. Each human or DA uses their
unique perspective on the world of reference and
their internal goals and plans, to decide how to
respond to that speaker’s intent through an
appropriate action, an appropriate verbal response, or
both.

Thus, pragmatic adaptation sits at the boundary
between communication and action. Understanding
your utterance “Do you know how to open the
window?” as a request for specific action is a
complex feat requiring resolution of context-
dependent forms, indexical references, indirect

speech acts, and more. But that is only part of the
task. Having understood you, I must still decide on
an appropriate action by reasoning about
consequences of various actions (or inaction) relative
to your intent. For example, I could open the
window in silence, answer your yes/no question
“Yes, I do,” open the window with self narration
“Yes sir, I’m opening the window now,” report an
execution problem, e.g., tell you that the windows in
this building don’t open, request a clarification of
your intent, “Do you mean this window here or that
one,” propose an alternative action “How about if I
turn on the air conditioning instead,” or simply
ignore the request altogether. The Pragmatic
Adaptation component of our architecture lets us
model this human ability to convert an indirect
speech act into the appropriate response based on
situational and communicative context.

Dialog Management and Repair
The dialog management skill requires knowing such
things as when to interrupt, when to relinquish the
floor to another speaker, how to backchannel (e.g.,
nodding versus vocalization “Uh-huh”), and how to
repair disfluencies. Even in human dialog between
two people who are well acquainted, dialog
disfluencies occur frequently during normal
communicative exchange. Thus, competent speakers
of all languages have developed skills for preventing,
detecting, diagnosing, and repairing the inevitable
disfluencies that arise. Indeed, the dialog repair mode
so defined is not an aberration but is as much a part
of successful interaction as the primary topic dialog.

For humans or DA’s, dialog repair requires a
repertoire of strategies to deal with various forms of
dialog disfluency and to service the needs of a given
user relative to a given backend. For example, if the
DA is stuck on an ambiguity, it can guess (randomly
select one of the interpretations), procrastinate the
decision as long as possible, or request a clarification
from the user. If the input is interpretable, but it
translates to a command that is impossible to execute
or nonsensical in the current context, the DA can
report the error and suggest an alternative action, it
can try to diagnose the problem and present the user
with options for action to remedy the situation, or it
can make a unilateral repair and watch for objections
from the user.

McRoy (1996) presents a thorough treatment of
dialog repair including prevention of dialog
disfluencies. While prevention is essential for any
serious work on repair dialog per se, we will not
address it in this paper. Our description of the repair

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

process (in humans or synthetic DA’s) comprises the
following subtasks.
1. Detect: One of the parties in the dialog must
recognize that there is a problem, otherwise the
dialog continues, hampered by propagated effects of
the miscommunication.
2. Diagnose: A determination must be made as to the
source of the dialog trouble. This diagnosis can be
made unilaterally, or collaboratively by the two
conversants. For automated systems, as with human
dialog interaction, disruptions to understanding can
take place at a number of levels. We have adopted
the model of collaborative communication defined by
Clark et al. (1997), borrowing their eight levels of
presentation acceptance to use as points of potential
interpretation failure. In this way we distinguish
categories of dialog disfluency based on which
component of the dialog agent system indicates
difficulty in carrying out its step in the analysis:
speech recognition, utterance interpretation, context
tracking, or internal elements of pragmatic adaptation
(e.g., domain model incompatibility, user model
conflict, or ill-formed backend command).
3. Devise Recovery Plan: Even given a successful
detection and diagnosis, we must query user interface
design parameters to determine the preferred method
for recovery. For example, upon determining that a

user misconception is the cause of an illegally stated
question or command, the system has the options of
(a) correcting the command without bringing it to the
user's attention, (b) correcting the command and
reporting back to the user the proper formulation of
the command, or (c) reporting the problem without
correcting it and suggesting that the user reissue the
command using a legal formulation.
4. Execute Recovery: For spoken dialog systems this
recovery plan must be executed in collaboration with
the other dialog agent(s). Since human dialog agents
are unpredictable in repair dialogs as they are in
primary dialogs, the DA may have to respond to user
input that fails to match behavior prompted for
during the repair. For example, the repair prompt
“Do you mean this bridge?” calls for a yes/no answer
but the user can surprise the DA with “That’s not a
bridge,” or “The assembly area,” or “Please repeat.”
5. Close and return to the primary dialog: Once
the dialog trouble has been resolved, both system and
user must be brought jointly to the understanding that
the next utterance is a return to the primary dialog.
Options for achieving this return step include an
overt closure statement, or appropriate embellishment
of or wrapper around the next utterance to
unambiguously associate it with the primary dialog.

User

Text-to-
Speech

Utterance
Generation

Backend
Environment

Context
Tracking
on Input

Speech
Recognition

Utterance
Interpretation

Pragmatics
on Output

Context
Tracking
on Output

Pragmatics
on Input

Dialog
Manager

Discourse Pegs

Context

Mentions

KB Entries

Actual
Connections

Logical
Flow

<label>

<label>

COTS
Components

Research
Components

Acoustic
Waveform

ASCII
String

Utterance
Analysis

Input Dialog
Contribution

Context
Updates

Context
Updates

API
Command

API
Backend
Result

Output Dialog
Contribution

Output
Utterance

Character
String

Synthesized
Utterance

User

Text-to-
Speech

Utterance
Generation

Backend
Environment

Context
Tracking
on Input

Speech
Recognition

Utterance
Interpretation

Pragmatics
on Output

Context
Tracking
on Output

Pragmatics
on Input

Dialog
Manager

Dialog
Manager

Discourse Pegs

Context

Mentions

KB Entries

Discourse Pegs

Context

Mentions

KB Entries

Actual
Connections

Logical
Flow

<label>

<label>

COTS
Components

Research
Components

Acoustic
Waveform

ASCII
String

Utterance
Analysis

Input Dialog
Contribution

Context
Updates

Context
Updates

API
Command

API
Backend
Result

Output Dialog
Contribution

Output
Utterance

Character
String

Synthesized
Utterance

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

DIALOG AGENT ARCHITECTURE
The capabilities of an intelligent DA as defined
above are implemented using the software
architecture shown in Figure 1. Each DA has an
animated screen character, an NPC in the multiplayer
game NeverWinterNights™ that occupies the
position of the Backend Environment in the
architecture.

Context State Representation
The three-level representation of context shown in
Figure 2 is based on a computational theory that
partitions information about surface communicative
forms (Mentions), discourse-level abstractions of
entities that have been mentioned or can be
mentioned in the near future (Discourse-Pegs), and
knowledge of the world of reference (KB objects).
These three types of information available to the DA,
have distinct procedures for access, updating, and
decay over time. The Belief System, implemented as
a Knowledge Base (KB), represents the DA’s beliefs
about the world under discussion, which may include
a model of the DA’s dialog partner (the user model),
ontologies, rules of inference, analogical reasoning
engine, and more. In the current implementation we
are using our in-house General Representation
Inference and Storage Tool (GRIST) populated with
an ontology representing NeverWinterNights™
entities, states, events, and rules of inference.

The Discourse Model encodes the DA’s current
understanding of the information content that is
currently in shared focus. Content of the discourse
model involves systematic uncertainty and is
understood by the DA’s meta-cognitive awareness to
be potentially incomplete or flawed. Information in
the Discourse Model is organized around abstract
objects called Discourse-Pegs (DPs), that represent
the DA’s current focus of attention. DPs decay from
prominence only when they are ignored by both
speakers. When neither DA nor human user
mentions a DP for a time it loses its ability to license,
or sponsor new dependent forms and is eventually
replaced by new DPs for new constructs in focus.
There is one Surface Form Buffer for each modality
channel (keyboard, speech, joystick, mouse, output
graphics, eye tracker, etc.) and its content is supplied
by a processor that captures input and output
communicative events and interprets them to a level
equivalent to first-order predicate logic. Unlike DPs,
the objects at the surface level, called Mentions,
decay rapidly as a function of time so that linguistic
forms, sounds, etc., are soon lost to the context
representation while new Mentions replace them. A

new Mention can refresh an existing DP or cause a
new DP to be introduced into the Discourse Model.

This context representation and updating framework
was designed to model cognitive processes exhibited
in human dialog interaction: the ability to understand
an explanation without believing it, the ability to use
knowledge about the world and inferential reasoning
to construct an internally consistent model of a
counterfactual world, the ability to say things that
one does not believe to be true, and the inability to
interpret context-dependent references to concepts
that have fallen out of discourse focus due to simple
passage of time or due to overwriting by new
communicative events that intervene. The model
enables these behaviors by distinguishing discourse
interpretation from assimilation of beliefs,
distinguishing private perception and internal
reasoning, from joint observations of situational
context shared between speaker and hearer as the
common ground (Clark, et al. 1989).

Discourse-Pegs can relate to one or more surface
Mention. The Mentions involved may be directly
related to each other syntactically, or indirectly
related semantically through the DP that they share.
For example, in "They drove an M1A1 to the
assembly area. They were forced to abandon the
tank to recover wounded so the vehicle is still there."
the Mentions for “tank,” “M1A1,” and “vehicle” do
not show linguistic dependence, but are related
semantically through their reference to a common
DP.
The Context Tracker accesses and updates its own
representation of context and lets remaining
components of the DA access it to reason about
appropriate interpretations and their own next
actions.

Dialog Management
The Dialog Manager (DM) is the facility of the DA
that controls the interaction between the human user
and all system components that contribute to the
user’s experience of the dialog. This includes
Context Tracking and Pragmatic Adaptation. The
DM orchestrates the firing of modules to process
input speech and generate output responses, update
context, and translate input requests and queries into
well-formed commands in the language of the
backend API, then translate backend output into
context-appropriate natural language. The DM
property settings control the ‘personality’ of the DA
that the user experiences. Three implementation
features that help create DA personality are mixed-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

initiative dialog, dialog troubleshooting, and
backchanneling.

Mixed initiative interaction has long been recognized
for its advantages. Instead of long complicated
utterances, commands can be spoken in shorter, more
natural segments that are easier to both interpret and
confirm. If the user’s original input is not sufficient
for the Utterance-Interpretation subtask, the DA can
elicit the missing information, and even suggest an
intelligent choice of default values for remaining
gaps based on information from the context manager.

Mixed initiative interaction requires dialog situation
awareness. When the DA is responding by voice or
prompting the user, the user will be able to interrupt
it or “barge in.” Likewise, if the DA is in the
process of speaking to the user and any other higher
priority event takes place, the DA will interrupt its
own output and either discard it or record it for later
processing. The DA can be designed to cease the
initiative when it needs to get the user’s attention for
any reason—e.g., when it has completed an off-line
task that the user had requested, when there is an
incoming call, when a new player logs on to the
game, etc.

DIALOG-ENABLED ITS
The training motivation behind this ongoing
implementation project is to create engaging ITS
applications for teaching military personnel about
health, safety, and medical risks, in ways that will
increase their ability to make informed lifestyle
choices. Self-destructive behavior does not, in many
cases, result from a lack of knowledge about cause-

effect relations involving lung cancer, AIDS, and
prosecution for DUI. High-risk lifestyle decisions
involve non-rational reasoning and so our system is
designed to approach the learner on a cognitive level
that is inaccessible to rational argumentation. We
now describe how the multiplayer game engine
NeverWinterNights™ by Bioware© has been
integrated into the Backend-System slot of our DA
architecture to allow us to author an instructional
game HEDONIST (Health, Economy, Drugs,
Obesity, Nicotine, Injury, and Safe-Sex Tutor) for
helping learners to overcome influences of
propaganda and peer pressure.

Using the game authoring tools provided by
Bioware© we have created game modules to serve
the needs of our training system. The HEDONIST
scenario entails a player logging on in the role of
Commanding Officer (CO) and engaging a dialog-
enabled NPC in the role of the CO’s Executive
Officer (XO). Other NPCs that populate the CO’s
staff are termed At-Risk Agents (ARAs). NPCs
(ARAs and XO) converse with each other in purely
synthetic dialogs that become audible to the player
and get recorded as part of the shared context, only
when the Player’s Character (PC), i.e., the avatar for
the CO that represents the player, moves into
proximity of the NPC avatars who are talking.

An ARA’s lifestyle choices are driven by its internal
configuration of decision functions. The object of
the game is to persuade your staff of ARAs to modify
their internal functions so that as many as possible
make wise lifestyle choices. The player can only
modify ARAs indirectly, through argumentation and
discussion. As a player in the role of CO progresses

World

Surface Form
Buffer
(mentions)

Belief
System

lexical
knowledge

(belief acquisition)user
model

(discourse
generation)

Discourse
Model

domain
knowledge

(perception)

(context) (discourse
interpretation)

(reasoning,
constraints)

other
agent

DP-A

DP-C

DP-D

DP-E
DP-BWorld

Surface Form
Buffer
(mentions)

Belief
System

lexical
knowledge

(belief acquisition)user
model

(discourse
generation)

Discourse
Model

domain
knowledge

(perception)

(context) (discourse
interpretation)

(reasoning,
constraints)

other
agent

DP-A

DP-C

DP-D

DP-E
DP-B

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

in mastery, the challenge is increased through
assignment of larger numbers of ARAs who are more
difficult to persuade and/or who lack self discipline
to make choices consistent with their internal values.

INITIAL PROTYTPE
The HEDONIST implementation as of June 2003
was a limited prototype with minimal versions of
each component in the architecture. In this
prototype, the player, XO, and ARAs are restricted to
dialogs about smoking. After the DA interprets a
spoken input from the user, “How many people in
my staff are smokers?” “How long has Andrew been
smoking?” or “Tell Andrew to stop smoking,” it
translates the interpreted result into a well-formed
command to the backend, e.g., an SQL query, or a
call to the natural language output system to
generate an audible utterance such as “Andrew, stop
smoking” that gets conveyed from the XO to the
ARA with designation Andrew. In the prototype,
ARAs are blindly obedient and robotically self-
disciplined so that the XO always conveys the
message to the ARAs who always change their value
function in response to CO commands and always
choose behavior consistent with their value
functions.

The prototype leverages our own prior results for
knowledge-based DA construction—including the
architectural framework, the Context Trackers for
Input and Output, our GRIST Knowledge Base
system that constitutes the third tier of the Context
Representation, the Pragmatics Adaptation modules
(for input and output) that form the boundary
between communication and action, and the Dialog
Manager that controls the overall interaction.

We constructed a temporary grammar and lexicon
and defined finite state machines for sentence parsing
and generation of output utterances. These are
introduced strictly as placeholders for future
components to be obtain from sources of mature
technology available in the computational linguistics
community. In the prototype grammar (enumerated
below) personal pronouns are recognized as legal
fillers of the <person> slot, and are resolved relative
to the Mentions and DPs in the current context.
When the prototype ITS game is initialized, Tim and
Sally are the only known ARAs and the player can
introduce new ARAs to their staff through assertions
to the XO, e.g., “George reports to me.” The current
placeholder lexicon allows the <person> slot to be
filled by Tim, Sally, George, or Andrew and the
prototype grammar contains these formulas:
 <smokeQues> = does <personOrPronoun> smoke;

 <smokeJust> = why does <personOrPronoun>
smoke;
 <follow> = follow me | come here;
 <stopFollow> = stay here | stop following me | stop
there;
 <age> = how old is <personOrPronoun>;
 <smokeStart> = when did <personOrPronoun> start
smoking;
 <subjectPronoun> = he | she | they;
 <objectPronoun> = him | her | them;
 <smokeCommand> = tell (<person> |
<objectPronoun>) to stop smoking;
 <numberSmokers> = how many smokers are there;
 <smokingTell> = <personOrPronoun> smokes
<quant> (pack | packs) a day;
 <personCreate> = <person> is in my unit;
<quant> = one | two | three;
<person> = Tim | George | Andrew | Sally;
<personOrPronoun> = <person> | <subjectPronoun>;

We used COTS or open source products to populate
remaining components of the architecture, including
ASR (automatic speech recognition), TTS (text to
speech), and the commercial NeverWinterNights™
game engine. The prototype system runs in
distributed client-server mode over a local network of
personal computers. Appendix B enumerates the
utterances and corresponding responses from the
prototype DA.

SUMMARY AND FUTURE PLANS
This proof-of-concept demonstration represents the
starting point for ITS applications to address a range
of training objectives. We applied our existing
architecture for knowledge-based spoken dialog
interaction to construct a Dialog Agent (DA)
interface to a simulation system, in this case a multi-
player online game. While this architecture has been
used in prior implementations to personify the
disembodied controller of simulation systems, and
allow simuated agents to respond to spoken
commands, this is its first application to transforming
a reactive but non-communicative Non-Player
Character (NPC) into an intelligent Dialog Agent,
opening up a new set of design options for increasing
the naturalness of the instructional game. The first
domain of instruction has been teaching military
personnel about health, safety, and medical risks
associated with lifestyle choices, with the research
aim of helping users to overcome psychological
limitations stemming from framing effects. The
hypothesis being tested is that such a system can help
decision makers to be less vulnerable to destructive
propaganda and fallacious but intuitively appealing

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

arguments that downplay negative consequences of
risky behavior.

ACKNOWLEDGEMENTS
We received valuable input from Jim Ong and
Jeremy Ludwig who also contributed to the design
and implementation of the NeverWinterNights™
link. We are grateful to David Duff for technical
suggestions on the design and construction of the
demonstration system and for comments on an earlier
draft of this document. Jason Robard offered
expertise on current practice in game-based military
training.

REFERENCES
Clark, H. and E. Schaeffer (1989) "Contributing to

Discourse" Cognitive Science 13:259-294.
Reiter, E. and R. Dale (2000) Building Natural

Lang Generation Systems. Cambridge Univ.
Press.

Duff, D. and S. LuperFoy (1996) "A Centralized
Troubleshooting Mechanism for a Spoken Dialog
Interface to a Simulation Application" International
Symposium on Spoken Dialog, Philadelphia.

Glass, M. and B. DiEugenio (2002) MUP The UIC
Standoff Markup Tool. In proceedings 3rd SIGDial
workshop on Discourse and Dialog.

Goldschen, A., Harper, L.D., Anthony, E.R. (1998)
The Role of Speech in a Distributed Simulation:
The STOW-97 CommandTalk System.

Graesser, A., et al. (2002) “Why-2 Auto Tutor” oral
presentation to ONR workshop on Tutorial
Discourse.

Jurafsky, D., Bates, R., Coccaro, N., Martin, R.,
Meteer, M., Ries, K., Shriberg, E., Stolcke, A.,
Taylor, P., and Van Ess-Dykema, C. (1997) “Johns
Hopkins LVCSR Workshop-97 SWBD Discourse
Language Modeling Project Final Project Report.

LuperFoy, S. (1996) "Tutoring Versus Training: A
Spoken Language Dialog Manager for

Instructional Systems" TWLT-11 Twente
Workshop on Language Technology Number 11,
Dialog Management in Natural Language Systems.
University of Twente.

Luperfoy, S., D. Loehr, D. Duff, K. Miller, F. Reeder,
and L. Harper (1998) “An Architecture for Dialog
Management, Context Tracking, and Pragmatic
Adaptation in Spoken Dialog Systems”. In
proceedings 36th Annual Meeting of the
Association for Computational Linguistics.

McRoy, S. and G. Hirst (1995) "The Repair of Speech
Act Misunderstandings by Abductive Inference"
Journal of Computational Linguistics, vol. 21 no.
4.

Miller, K., S. LuperFoy, E. Kim, D. Duff (1995)
"Some Effects of Electronic Mediation on Spoken
Bilingual Dialog: An Observational Study of
Dialog Management for the Interpreting
Telephone" Electronic Journal of Communication.

Nielsen, P., Koss, F., Taylor, G., Jones, R. M. (2002)
Communication with Intelligent Agents, in
proceedings I/ITSEC 2002.

Walker, M., A. Rudnicky, R. Prasad, J. Aberdeen , E.
Bratt, J. Garofolo, H. Hastie, A. Le , B. Pellom, A.
Potamianos, R. Passonneau, S. Roukos, G.
Sanders, S. Seneff, D. Stallard. (2002) “DARPA
Communicator Cross-System Results for the 2001
Evaluation” in proceedings, ICSLP (International
Conference on Speech and Language Processing).

Webber, B. (1995) Instructing Animated Agents:
Viewing Language in Behavioral Terms. Proc.
International Conference on Cooperative Multi-
modal Communication, Eindhoven, Netherlands,
May.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

APPENDIX A: Examples of Context Dependence in Human Dialog

Phenomenon Example Comments

DA: And so, what about nicotine, is it also
addictive?

The pronoun finds its sponsor
(nicotine) in the current sentence.

Intra-sentential
anaphora

USER: Yes, only 26 people lost their lives? “26 people” sponsors “their”
Inter-sentential
anaphora

USER: Yes, it is a addictive substance that
can hook you quickly.

Here, the pronoun finds its
“sponsor” (nicotine) in an earlier
sentence.

DA: Given your definition of illegal, is binge
drinking also illegal?
USER: Yes it is.

Reconstruction of the elliptical
expression yields, “Yes, it is also
illegal.” The sponsor of “it” is
DDT so pronoun resolution
yields, “Yes, DDT is also toxic.”

DA: By whom? Main verb is elided

Ellipsis

DA: And what about nicotine? The operator “what about(x) ”
gets the interpretation
APPLY-PROPOSITION-TO(x)

USER: That is controversial. The deictic adverbs, “this,”
“that,” “these,” “those,” etc. are
sponsored by something in the
prior discourse.

USER: No it was earlier than that.

Discourse Deixis

USER: This is undecided.
Totally Dependent
Definite Noun Phrase

DA: Okay. I understand the term now. This “term” is a second mention
of (and sponsored by) a term that
was mentioned earlier.

Partially Dependent
Definite Noun Phrase

DA: Was it the purpose The “purpose” is new to the
discourse but dependent on a
purposeful event mentioned
earlier.

One-Anaphor DA: Okay, you are telling me about one in
which nicotine killed someone.

This new event partially depends
on a concept mentioned earlier,
the class of deadly events.

USER: I am not aware of any? Quantifier as One-
Anaphor Does serin gas have other uses, unrelated to

warfare?

Quantifiers can behave as one-
anaphoric expressions
introducing new entities by
depending on entities mentioned
earlier

It has been active since 1982 and now has
members numbering upwards of---

Functional relationship between
indexical expressions, “now,”
“me,” “you,” “here,” “yesterday,”
etc. and the situation of the
utterance.

DA: Okay, you are telling me about one in
which serin gas was released into a
population.

Indexical

USER: I am not aware of any?

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003

APPENDIX B: Input Utterances and Corresponding Responses

Utterance Template Dialog Agent (XO) Response

Does <person> smoke?
How old is <person>?
Why does <person> smoke?
When did <person> start smoking?

Queries the GRIST knowledge base looking for
a certain type of assertions. If one is found, the
content is used to generate an appropriate
response. If not, a standard response is used.
If the <person> named is not a known symbol,
the system replies as such.

Stay here.
Stop there.
Stop following me.

Sends a message to the NeverWinterNights™
server telling it to turn off the XO following
behavior.

Come here.
Follow me.

Sends a message to the NWN server telling it
to turn on the XO following behavior.

<person> is in my unit. If a person is referenced who is not currently in
the knowledge base, then a new Symbol with
that name is created. Otherwise, the system
replies that it already knew that.

<person> smokes (one | two | three) (pack |
packs) a day.

Adds or replaces an assertion into the GRIST
knowledge base that matches the content of the
input utterance. If <person> is not resolvable
that is indicated.

How many smokers are there? Queries the knowledge base to determine how
many smokers there are. This is done by
looking for agents that have a smokingQuantity
slot filled in. This is the slot that is queried by
the Does <person> smoke query, and is
updated by the input utterance just above.

Tell <person> to stop smoking. If <person> is resolvable, and a smoker, then
the XO says “<person>, stop smoking”, and
<person>’s smokingQuantity slot is set to null,
effectively decrementing the number of
smokers. If <person> is not a smoker, the XO
says that the task cannot be done.

Who are the smokers? Like ‘how many smokers are there’, this query
checks the knowledge base to see who is a
smoker, but instead of just counting, it puts
them into a list.

