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ABSTRACT 

Simulation systems that pervade military training, mission rehearsal, and tactical decision making have successfully 
leveraged advances in computer hardware and M&S software to capture key properties of the represented world. 
These sophisticated systems present lifelike behavior to the user but are often difficult to use and time-consuming to 
learn, so that human interaction with simulation-based training applications remains awkward.  This is especially 
true when the training system has been designed from the perspective of the backend software application rather 
than the human user or the cognitive task in which the user will be engaged. The result is that students are unable to 
lose themselves in the simulated scenario because the training system itself demands their conscious attention.  For a 
subset of simulation-based applications the solution will involve mixed-initiative natural language dialog that lets 
the human mentally ‘penetrate’ the user interface to communicate directly with synthetic agents. Spoken natural 
language dialog in particular, lets the user control the simulation while keeping their eyes, hands, and focus of 
attention on the exercise and its representation in the simulation. This paper describes a software architecture for 
integrating mixed-initiative spoken dialog interaction into simulation systems, and illustrates one use of that 
architecture to integrate a dialog-enabled ITS with the multiplayer online game NeverWinterNights™.  
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MOTIVATION 
The training value of a simulation-based Intelligent 
Tutoring System (ITS) depends ultimately on the 
user’s ability to feel immersed in the instructional 
scenario that it presents.  That means being able to 
operate the training application without focusing 
conscious attention on it as a software system. User-
centered engineering (UCE) techniques address this 
need by guiding the design of training systems that 
are natural for the learner to use and better optimized 
to the cognitive tasks that will result in retention and 
transfer of learning. For some applications, mixed-
initiative spoken dialog interaction between human 
and synthetic dialog agents (DA’s) will be a key 
component of the user-centered design.  The dialog 
mode of interaction supports the train-as-we-fight 
objective by allowing users to engage the synthetic 
agents representing team mates, prisoners of war, and 
others in a way that feels natural and intuitive.  
Further, the speech modality lets the user control the 
simulation while keeping their eyes, hands, and focus 
of attention on the training exercise and its 
representation in the simulation. 

 
OVERVIEW 

Stottler Henke Associates has adapted a tested 
architecture for knowledge based spoken dialog 
systems (Luperfoy, et al., 1998) to construct 
simulation-based training systems with mixed-
initiative dialog.  This paper describes that generic 
architecture and the reusable components that are 
instantiated for each new dialog application.  We 
then report on the process and result of applying that 
architecture to one training system that integrates  
dialog-enabled ITS technology with a popular on-line 
game called NeverWinterNights™.   
 
This paper is not about the pedagogical theory 
chosen for this training application instance or the 
advantages of the resulting ITS for training 
effectiveness; it is about the architecture and the 
procedure for constructing a system to instantiate any 
pedagogy requiring dialog.  We sketch the basic 
structure of the interaction only to situate our 

discussion of the architecture that supports it.  In the 
military scenario selected, a human player assumes 
the role of a Commanding Officer (CO) and controls 
the corresponding Player Character (PC) that engages 
in spoken dialog with Non-Player Characters (NPC) 
representing the Executive Officer (XO) and 
subordinate staff.  When the PC is in sufficient 
proximity with a pair of NPCs engaged in 
conversation, their voices become audible so that the 
player overhears them. Salient aspects of their 
communicative and non-communicative behavior get 
recorded as part of the dynamic situational context of 
the training scenario.  For this example 
demonstration we are working in the domain of 
health, safety, and medical risks, according to 
customer1 need for distributed  training systems that 
help military staff overcome psychological framing 
effects that can steer decisions about lifestyle risks. 
 
In the remainder of this document we define the 
categories of computational dialog processing, derive 
functional requirements dictated by those categories, 
present a software architecture that supports those 
functions, and illustrate the process and result of 
applying the architecture to the conversion of a 
COTS multiplayer online game into a platform for 
designing innovative lessons using a simulation-
based ITS with dialog-enabled animated 3D agents. 
 

HUMAN-MACHINE DISCOURSE  
The range of discourse phenomena that can occur in 
a multi-user simulation or game environment used 
for instruction can be classified into six categories of 
computational dialog functionality. (1) Human-
system dialog lets the user command and control the 
application using a dialog-based user interface, e.g., 
“Create another enemy tank battalion”, or “Zoom in 
on that bridge”, or “Bring up the topological map 
overlay.” (See Walker, et al. 2002 for a comparative 

                                                           
1 This work was supported by OSD and ONR under 
the direction of Dr. R. Perez. The instructional need 
was brought to our attention by Cmdr. R. Shaffer of 
the Naval Health Resource Center. 
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evaluation of several human-system dialog interface 
designs.) (2) Computer-mediated human-human 
dialog lets players, instructors, operator/controllers, 
and observers communicate with each other in the 
context of the simulated scenario (Miller, et al. 
1996).  (3) Automated analysis of those human-
human dialogs either in real time or retrospectively 
(Jurafsky, et al., 1997; Glass, et al., 2002) can assist 
in evaluation of student and/or training system 
performance.  These analyses in (3) can also be used 
to model spontaneous human-human dialog for a 
fourth category of computational dialog, namely,  (4) 
computer-generated synthetic agent dialog that is 
overheard by the user as part of the situational 
context of the unfolding scenario, but involves no 
human speaker.  Examples include synthetic dialog 
between dueling chat bots available on in EMACS or 
on the worldwide web. (5) Human-DA (Dialog 
Agent) dialog lets players engage the dialog-enabled 
synthetic agents of the simulation world and hear 
contextually-appropriate DA responses, e.g., “Fifth 
platoon, decrease speed by two zero miles per hour”, 
“Yes, Sir. Fifth platoon decreasing speed”, “First 
platoon, what is your position?”   (Webber et al., 
1995; Goldschen, et al. 1998; Nielsen, et al., 2002).  
(6) Human-tutor dialog is a related form of human-
machine dialog that provides a personification of the 
ITS as a disembodied coach (Luperfoy, 1996) or, 
depending on the application constraints, as a Non-
Player Character (NPC) with an overt screen 
presentation (Graesser, et al., 2002).  The dialog-
enabled tutor can offer ‘over-the-shoulder’ verbal 
coaching during the exercise, or it can collect and 
save observations for After-Action Review when it 
can engage the user in meta-level dialog about the 
lesson, the scenario, or the user’s performance. 
 
While the implementation project referenced in this 
paper involves all six forms of dialog processing, we 
restrict this discussion to categories (5) and (6) to 
illustrate the human-DA dialog between a 
NeverWinterNights™ player and the dialog-enabled 
NPC that occupies the role of the player’s XO.  
 

DIALOG AGENT CAPABILITIES 
In this section we define the three component 
capabilities of  an intelligent DA.  These three 
modules, Context Tracking, Pragmatic Adaptation, 
and Dialog Management constitute the central 
contribution of this paper to ITS engineering. 
 
Context Tracking  
Humans as Context Trackers 
Spontaneous human language contains context-
dependent referring expressions, including pronouns, 

indexical references (“tomorrow”, “us”, “that 
room”), elliptical phrases (“No, it doesn’t.”), definite 
noun phrases,  and other forms  that receive their 
semantics in full or in part from the context of their 
occurrence.  (See Appendix for a table of examples.)  
In order to interpret these dependent forms when 
they occur, humans mentally track the salient 
elements of the communicative context and the 
perceptually shared situational context that can 
sponsor the occurrence of subsequent dependent 
forms.  An oversimplified description of the tracking 
process is that when we hear a new utterance we 
consult our context representation to find sponsors 
for any dependent forms in the new utterance, and we 
add new sponsors to the context representation to 
prepare for subsequent dependent forms. In human 
dialog, the speaker’s context includes their 
conceptual model of the state of the listener. That 
model of the listener guides the speaker’s 
composition of each new dialog utterance. In return, 
the human listener will often assist the speaker by 
offering verbal or nonverbal indicators of how well 
their participation in the dialog is going, e.g., 
nodding, puzzled facial expression, or  vocal 
backchanneling  (“I see,” “uh-huh,” “Go on.”). 
 
Thus, humans come to the human-machine situation 
well equipped as listeners and speakers, able to hold 
up their end of a cooperative mixed-initiative dialog.  
They also bring valuable expectations of how the DA 
will behave.  We use the human dialog behavior as a 
development time model to guide our design of a 
cooperative DA, and at runtime we rely on the mental 
and communicative behavior of the user to reinforce 
the DA’s algorithms for updating context 
information.   
 
Dialog Agents as Context Trackers 
The DA in type (5) and (6) dialog, can be viewed as 
a mediator between the human user and the backend 
software application.  Its job is to make sense of each 
new human input (statement, query, or command) 
relative to its own internal representation of the 
context; then to translate the input into a well-formed 
command in the language of a backend application.  
It updates its internal context representation with the 
input communicative event and issues the backend 
command. Next the DA intercepts the backend 
response to that command, translates the response 
into a context-appropriate natural language output 
utterance (statement, question, suggestion) for the 
user, and finally, updates its internal context 
representation with that output communicative event 
to prepare for the next user input.  
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For simulation-based ITS dialog, the context tracker 
records salient situational as well as communicative 
information. The DA needs awareness of the backend 
simulation/game, its possible states, error conditions, 
its syntax for well-formed input commands, its rules 
of engagement, as well as events and state changes 
that happen to occur at runtime. 
 
Consider the following hypothetical input command 
to a game-based ITS, “Don’t do that.  Just tell her to 
go get it and send it to him on the other bridge.”  To 
interpret this input utterance as the user’s desire that 
you command Olivia to locate a particular vehicle 
and report it to Samuel who is on a bridge other than 
the bridge in focus, the DA will consult its context 
representation to find at minimum, entities for Olivia, 
Samuel, the particular vehicle in question, and the 
spatial layout and location of entities, including at 
least two bridges, the speaker (PC) and the embodied 
DA (NPC) itself.  To serve as a personified tutor, the 
DA must also have access to the evolving student 
model,  the training objectives, the curriculum model,  
remediation options, and other knowledge sources 
required to deliver the desired pedagogical approach.   
 
The combined situational and communicative context 
is initialized at the start of the session and then all 
salient communicative and situational events/state 
changes that occur are recorded by the context 
tracker during the exercise. A DA that maintains 
even limited versions of the above forms of 
contextual information can be construed as having 
‘beliefs’ about the external world, the user, the 
backend application, and about the dialog itself.  
 
Pragmatic Adaptation 
Pragmatic adaptation is one way humans and 
synthetic DA’s demonstrate intelligent behavior in 
dialog: humans and DA’s use pragmatic knowledge 
and the current context to supplement a literal 
interpretation of each communicative act in order to 
arrive at an actionable understanding of the speaker’s 
underlying intent.  Each human or DA uses their 
unique perspective on the world of reference and 
their internal goals and plans, to decide how to 
respond to that speaker’s intent through an 
appropriate action, an appropriate verbal response, or 
both.   
 
Thus, pragmatic adaptation sits at the boundary 
between communication and action. Understanding  
your utterance “Do you know how to open the 
window?” as a request for specific action is a 
complex feat requiring resolution of context-
dependent forms, indexical references, indirect 

speech acts, and more. But that is only part of the 
task. Having understood you, I must still decide on 
an appropriate action by reasoning about 
consequences of various actions (or inaction) relative 
to your intent.  For example, I could open the 
window in silence, answer your yes/no question 
“Yes, I do,” open the window with self narration 
“Yes sir, I’m opening the window now,” report an 
execution problem, e.g., tell you that the windows in 
this building don’t open, request a clarification of 
your intent, “Do you mean this window here or that 
one,” propose an alternative action “How about if I 
turn on the air conditioning instead,” or simply 
ignore the request altogether. The Pragmatic 
Adaptation component of our architecture lets us 
model this human ability to convert an indirect 
speech act into the appropriate response based on 
situational and communicative context.   
 
Dialog Management and Repair 
The dialog management skill requires knowing such 
things as when to interrupt, when to relinquish the 
floor to another speaker, how to backchannel (e.g., 
nodding versus vocalization “Uh-huh”), and how to 
repair disfluencies. Even in human dialog between 
two people who are well acquainted, dialog 
disfluencies occur frequently during normal 
communicative exchange. Thus, competent speakers 
of all languages have developed skills for preventing, 
detecting, diagnosing, and repairing the inevitable 
disfluencies that arise. Indeed, the dialog repair mode 
so defined is not an aberration but is as much a part 
of successful interaction as the primary topic dialog.   
 
For humans or DA’s, dialog repair requires a 
repertoire of strategies to deal with various forms of 
dialog disfluency and to service the needs of a given 
user relative to a given backend. For example, if the 
DA is stuck on an ambiguity, it can guess (randomly 
select one of the interpretations), procrastinate the 
decision as long as possible, or request a clarification 
from the user.  If the input is interpretable, but it 
translates to a command that is impossible to execute 
or nonsensical in the current context, the DA can 
report the error and suggest an alternative action, it 
can try to diagnose the problem and present the user 
with options for action to remedy the situation, or it 
can make a unilateral repair and watch for objections 
from the user. 
 
McRoy (1996) presents a thorough treatment of 
dialog repair including prevention of dialog 
disfluencies. While prevention is essential for any 
serious work on repair dialog per se, we will not 
address it in this paper. Our description of the repair 
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process (in humans or synthetic DA’s) comprises the 
following subtasks. 
1. Detect: One of the parties in the dialog must 
recognize that there is a problem, otherwise the 
dialog continues, hampered by propagated effects of 
the miscommunication.  
2. Diagnose: A determination must be made as to the 
source of the dialog trouble. This diagnosis can be 
made unilaterally, or collaboratively by the two 
conversants.  For automated systems, as with human 
dialog interaction, disruptions to understanding can 
take place at a number of levels. We have adopted 
the model of collaborative communication defined by 
Clark et al. (1997), borrowing their eight levels of 
presentation acceptance to use as points of potential 
interpretation failure.  In this way we distinguish 
categories of dialog disfluency based on which 
component of the dialog agent system indicates 
difficulty in carrying out its step in the analysis: 
speech recognition, utterance interpretation, context 
tracking, or internal elements of pragmatic adaptation 
(e.g., domain model incompatibility, user model 
conflict, or ill-formed backend command).  
3. Devise Recovery Plan: Even given a successful 
detection and diagnosis, we must query user interface 
design parameters to determine the preferred method 
for recovery. For example, upon determining that a 

user misconception is the cause of an illegally stated 
question or command, the system has the options of 
(a) correcting the command without bringing it to the 
user's attention, (b) correcting the command and 
reporting back to the user the proper formulation of 
the command, or (c) reporting the problem without 
correcting it and suggesting that the user reissue the 
command using a legal formulation.  
4. Execute Recovery: For spoken dialog systems this 
recovery plan must be executed in collaboration with 
the other dialog agent(s). Since human dialog agents 
are unpredictable in repair dialogs as they are in 
primary dialogs, the DA may have to respond to user 
input that fails to match behavior prompted for 
during the repair. For example, the repair prompt 
“Do you mean this bridge?” calls for a yes/no answer 
but the user can surprise the DA with “That’s not a 
bridge,” or “The assembly area,” or “Please repeat.” 
5. Close and return to the primary dialog: Once 
the dialog trouble has been resolved, both system and 
user must be brought jointly to the understanding that 
the next utterance is a return to the primary dialog. 
Options for achieving this return step include an 
overt closure statement, or appropriate embellishment 
of or wrapper around the next utterance to 
unambiguously associate it with the primary dialog. 
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DIALOG AGENT ARCHITECTURE  
The capabilities of an intelligent DA as defined 
above are implemented using the software 
architecture shown in Figure 1.  Each DA has an 
animated screen character, an NPC in the multiplayer 
game NeverWinterNights™ that occupies the 
position of the Backend Environment in the 
architecture.  
 
Context State Representation 
The three-level representation of context shown in 
Figure 2 is based on a computational theory that 
partitions information about surface communicative 
forms (Mentions), discourse-level abstractions of 
entities that have been mentioned or can be 
mentioned in the near future (Discourse-Pegs), and 
knowledge of the world of reference (KB objects). 
These three types of information available to the DA, 
have distinct procedures for access, updating, and 
decay over time. The Belief System, implemented as 
a Knowledge Base (KB), represents the DA’s beliefs 
about the world under discussion, which may include 
a model of the DA’s dialog partner (the user model), 
ontologies, rules of inference, analogical reasoning 
engine, and more.  In the current implementation we 
are using our in-house General Representation 
Inference and Storage Tool (GRIST) populated with 
an ontology representing NeverWinterNights™ 
entities, states, events, and rules of inference.  
 
The Discourse Model encodes the DA’s current 
understanding of the information content that is 
currently in shared focus. Content of the discourse 
model involves systematic uncertainty and is 
understood by the DA’s meta-cognitive awareness to 
be potentially incomplete or flawed. Information in 
the Discourse Model is organized around abstract 
objects called Discourse-Pegs (DPs), that represent 
the DA’s current focus of attention.  DPs decay from 
prominence only when they are ignored by both 
speakers.  When neither DA nor human user 
mentions a DP for a time it loses its ability to license, 
or sponsor new dependent forms and is eventually 
replaced by new DPs for new constructs in focus.  
There is one Surface Form Buffer for each modality 
channel (keyboard, speech, joystick, mouse, output 
graphics, eye tracker, etc.) and its content is supplied 
by a processor that captures input and output 
communicative events and interprets them to a level 
equivalent to first-order predicate logic.  Unlike DPs, 
the objects at the surface level, called Mentions, 
decay rapidly as a function of time so that linguistic 
forms, sounds, etc., are soon lost to the context 
representation while new Mentions replace them.  A 

new Mention can refresh an existing DP or cause a 
new DP to be introduced into the Discourse Model. 
 
This context representation and updating framework 
was designed to model cognitive processes exhibited 
in human dialog interaction: the ability to understand 
an explanation without believing it, the ability to use 
knowledge about the world and inferential reasoning 
to construct an internally consistent model of a 
counterfactual world,  the ability to say things that 
one does not believe to be true, and the inability to 
interpret context-dependent references to concepts 
that have fallen out of discourse focus due to simple 
passage of time or due to overwriting by new 
communicative events that intervene. The model 
enables these behaviors by distinguishing discourse 
interpretation from assimilation of beliefs, 
distinguishing private perception and internal 
reasoning, from joint observations of situational 
context shared between speaker and hearer as the 
common ground (Clark, et al. 1989). 
 
Discourse-Pegs can relate to one or more surface 
Mention. The Mentions involved may be directly 
related to each other syntactically, or indirectly 
related semantically through the DP that they share.  
For example, in "They drove an M1A1 to the 
assembly area.  They were forced to abandon the 
tank to recover wounded so the vehicle is still there." 
the Mentions for “tank,” “M1A1,” and “vehicle” do 
not show linguistic dependence, but are related 
semantically through their reference to a common 
DP. 
The Context Tracker accesses and updates its own 
representation of context and lets remaining 
components of the DA access it to reason about 
appropriate interpretations and their own next 
actions. 
 
Dialog Management 
The Dialog Manager (DM) is the facility of the DA 
that controls the interaction between the human user 
and all system components that contribute to the 
user’s experience of the dialog.  This includes 
Context Tracking and Pragmatic Adaptation. The 
DM orchestrates the firing of modules to process 
input speech and generate output responses, update 
context, and translate input requests and queries into 
well-formed commands in the language of the 
backend API, then translate backend output into 
context-appropriate natural language.  The DM 
property settings control the ‘personality’ of the DA 
that the user experiences.   Three implementation 
features that help create DA personality are mixed-
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initiative dialog, dialog troubleshooting, and 
backchanneling.   
 
Mixed initiative interaction has long been recognized 
for its advantages.  Instead of long complicated 
utterances, commands can be spoken in shorter, more 
natural segments that are easier to both interpret and 
confirm.  If the user’s original input is not sufficient 
for the Utterance-Interpretation subtask, the DA can 
elicit the missing information, and even suggest an 
intelligent choice of default values for remaining 
gaps based on information from the context manager.   
 
Mixed initiative interaction requires dialog situation 
awareness.  When the DA is responding by voice or 
prompting the user, the user will be able to interrupt 
it or “barge in.”   Likewise, if the DA is in the 
process of speaking to the user and any other higher 
priority event takes place, the DA will interrupt its 
own output and either discard it or record it for later 
processing. The DA can be designed to cease the 
initiative when it needs to get the user’s attention for 
any reason—e.g., when it has completed an off-line 
task that the user had requested, when there is an 
incoming call, when a new player logs on to the 
game, etc. 
 
 

DIALOG-ENABLED ITS 
The training motivation behind this ongoing 
implementation project is to create engaging ITS 
applications for teaching military personnel about 
health, safety, and medical risks, in ways that will 
increase their ability to make informed lifestyle 
choices. Self-destructive behavior does not, in many 
cases, result from a lack of knowledge about cause-

effect relations involving lung cancer, AIDS, and 
prosecution for DUI.  High-risk lifestyle decisions 
involve non-rational reasoning and so our system is 
designed to approach the learner on a cognitive level 
that is inaccessible to rational argumentation. We 
now describe how the multiplayer game engine 
NeverWinterNights™ by Bioware© has been 
integrated into the Backend-System slot of our DA 
architecture to allow us to author an instructional 
game HEDONIST (Health, Economy, Drugs, 
Obesity, Nicotine, Injury, and Safe-Sex Tutor) for 
helping learners to overcome influences of 
propaganda and peer pressure.  
 
Using the game authoring tools provided by 
Bioware© we have created game modules to serve 
the needs of our training system.  The HEDONIST 
scenario entails a player logging on in the role of 
Commanding Officer (CO) and engaging a dialog-
enabled NPC in the role of the CO’s Executive 
Officer (XO).  Other NPCs that populate the CO’s 
staff are termed At-Risk Agents (ARAs).  NPCs 
(ARAs and XO) converse with each other in purely 
synthetic dialogs that become audible to the player 
and get recorded as part of the shared context, only 
when the Player’s Character (PC), i.e., the avatar for 
the CO that represents the player, moves into 
proximity of the NPC avatars who are talking.   
 
An ARA’s lifestyle choices are driven by its internal 
configuration of decision functions.  The object of 
the game is to persuade your staff of ARAs to modify 
their internal functions so that as many as possible 
make wise lifestyle choices.  The player can only 
modify ARAs indirectly, through argumentation and 
discussion. As a player in the role of CO progresses 
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in mastery, the challenge is increased through 
assignment of larger numbers of ARAs who are more 
difficult to persuade and/or who lack self discipline 
to make choices consistent with their internal values.  
 

INITIAL PROTYTPE 
The HEDONIST implementation as of June 2003 
was a limited prototype with minimal versions of 
each component in the architecture.  In this 
prototype, the player, XO, and ARAs are restricted to 
dialogs about smoking. After the DA interprets a 
spoken input from the user, “How many people in 
my staff are smokers?” “How long has Andrew been 
smoking?” or “Tell Andrew to stop smoking,” it 
translates the interpreted result into a well-formed 
command to the backend, e.g., an SQL query, or a 
call to the  natural language output system to 
generate an audible utterance such as “Andrew, stop 
smoking” that gets conveyed from the XO to the 
ARA with designation Andrew.  In the prototype, 
ARAs are blindly obedient and robotically self-
disciplined so that the XO always conveys the 
message to the ARAs who always change their value 
function in response to CO commands and always 
choose behavior consistent with their value 
functions. 
 
The prototype leverages our own prior results for 
knowledge-based DA construction—including the 
architectural framework, the Context Trackers for 
Input and Output, our GRIST Knowledge Base 
system that constitutes the third tier of the Context 
Representation,  the Pragmatics Adaptation modules 
(for input and output) that form the boundary 
between communication and action, and the Dialog 
Manager that controls the overall interaction.   
 
We constructed a temporary grammar and lexicon 
and defined finite state machines for sentence parsing 
and generation of output utterances. These are 
introduced strictly as placeholders for future 
components to be obtain from sources of mature 
technology available in the computational linguistics 
community.  In the prototype grammar (enumerated 
below) personal pronouns are recognized as legal 
fillers of the <person> slot, and are resolved relative 
to the Mentions and DPs in the current context. 
When the prototype ITS game is initialized, Tim and 
Sally are the only known ARAs and the player can 
introduce new ARAs to their staff through assertions 
to the XO, e.g., “George reports to me.”  The current 
placeholder lexicon allows the <person> slot to be 
filled by Tim, Sally, George, or Andrew and the 
prototype grammar contains these formulas: 
 <smokeQues> = does <personOrPronoun> smoke; 

 <smokeJust> = why does <personOrPronoun> 
smoke; 
 <follow> = follow me | come here; 
 <stopFollow> = stay here | stop following me | stop 
there; 
 <age>  = how old is <personOrPronoun>; 
 <smokeStart> = when did <personOrPronoun> start 
smoking; 
 <subjectPronoun> = he | she | they; 
 <objectPronoun> = him | her | them; 
 <smokeCommand> = tell (<person> | 
<objectPronoun>) to stop smoking; 
 <numberSmokers> = how many smokers are there; 
 <smokingTell> = <personOrPronoun> smokes 
<quant> (pack | packs) a day; 
 <personCreate> = <person> is in my unit; 
<quant> = one | two | three; 
<person> = Tim | George | Andrew | Sally; 
<personOrPronoun> = <person> | <subjectPronoun>;  
 
We used COTS or open source products to populate 
remaining components of the architecture, including 
ASR (automatic speech recognition), TTS (text to 
speech),  and the commercial NeverWinterNights™ 
game engine. The prototype system runs in 
distributed client-server mode over a local network of 
personal computers.  Appendix B enumerates the 
utterances and corresponding responses from the 
prototype DA. 
 

SUMMARY AND FUTURE PLANS 
This proof-of-concept demonstration represents the 
starting point for ITS applications to address a range 
of training objectives. We applied our existing 
architecture for knowledge-based spoken dialog 
interaction to construct a Dialog Agent (DA) 
interface to a simulation system, in this case a multi-
player online game.  While this architecture has been 
used in prior implementations to personify the 
disembodied controller of simulation systems, and 
allow simuated agents to respond to spoken 
commands, this is its first application to transforming 
a reactive but non-communicative Non-Player 
Character (NPC) into an intelligent Dialog Agent, 
opening up a new set of design options for increasing 
the naturalness of the instructional game. The first 
domain of instruction has been teaching military 
personnel about health, safety, and medical risks 
associated with lifestyle choices, with the research 
aim of helping users to overcome psychological 
limitations stemming from framing effects. The 
hypothesis being tested is that such a system can help 
decision makers to be less vulnerable to destructive 
propaganda and fallacious but intuitively appealing 
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arguments that downplay negative consequences of 
risky behavior. 
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APPENDIX A: Examples of Context Dependence in Human Dialog

Phenomenon Example Comments 

DA: And so, what about nicotine, is it also 
addictive? 

The pronoun finds its sponsor 
(nicotine) in the current sentence. 

Intra-sentential 
anaphora 

USER: Yes, only 26 people lost their lives? “26 people” sponsors “their” 
Inter-sentential 
anaphora 

USER: Yes, it is a addictive substance that 
can hook you quickly. 

Here, the pronoun finds its 
“sponsor” (nicotine) in an earlier 
sentence. 

DA: Given your definition of illegal,  is binge 
drinking also illegal? 
USER: Yes it is. 

Reconstruction of the elliptical 
expression yields, “Yes, it is also 
illegal.” The sponsor of “it” is 
DDT so pronoun resolution 
yields, “Yes, DDT is also toxic.” 

DA: By whom? Main verb is elided 

Ellipsis 

DA: And what about nicotine? The operator “what about(x) ” 
gets the interpretation 
APPLY-PROPOSITION-TO(x) 

USER: That is controversial. The deictic adverbs, “this,” 
“that,” “these,” “those,” etc. are 
sponsored by something in the 
prior discourse. 

USER: No it was earlier than that.   

Discourse Deixis 

USER: This is undecided.  
Totally Dependent 
Definite Noun Phrase 

DA: Okay. I understand the term now.  This “term” is a second mention 
of (and sponsored by) a term that 
was mentioned earlier. 

Partially Dependent 
Definite Noun Phrase 

DA: Was it the purpose The “purpose” is new to the 
discourse but dependent on a 
purposeful event mentioned 
earlier. 

One-Anaphor DA: Okay, you are telling me about one in 
which nicotine killed someone.  

This new event partially depends 
on a concept mentioned earlier, 
the class of deadly events. 

USER: I am not aware of any? Quantifier as One-
Anaphor Does serin gas have other uses, unrelated to 

warfare? 

Quantifiers can behave as one-
anaphoric expressions 
introducing new entities by 
depending on entities mentioned 
earlier 

It has been active since 1982 and now has 
members numbering upwards of--- 

Functional relationship between 
indexical expressions, “now,” 
“me,” “you,” “here,” “yesterday,” 
etc. and the situation of the 
utterance. 

DA: Okay, you are telling me about one in 
which serin gas was released into a 
population.  

 

Indexical 

USER: I am not aware of any?  
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APPENDIX B: Input Utterances and Corresponding Responses 
  

Utterance Template Dialog Agent (XO) Response 
 

Does <person> smoke? 
How old is <person>? 
Why does <person> smoke? 
When did <person> start smoking? 
 

Queries the GRIST knowledge base looking for 
a certain type of assertions.  If one is found, the 
content is used to generate an appropriate 
response.  If not, a standard response is used.  
If the <person> named is not a known symbol, 
the system replies as such.  

Stay here. 
Stop there. 
Stop following me. 

Sends a message to the NeverWinterNights™ 
server telling it to turn off the XO following 
behavior. 

Come here. 
Follow me. 

Sends a message to the NWN server telling it 
to turn on the XO following behavior. 

<person> is in my unit. If a person is referenced who is not currently in 
the knowledge base, then a new Symbol with 
that name is created.  Otherwise, the system 
replies that it already knew that. 

<person> smokes (one | two | three) (pack | 
packs) a day. 

Adds or replaces an assertion into the GRIST 
knowledge base that matches the content of the 
input utterance.  If <person> is not resolvable 
that is indicated.  

How many smokers are there? Queries the knowledge base to determine how 
many smokers there are.  This is done by 
looking for agents that have a smokingQuantity 
slot filled in.  This is the slot that is queried by 
the Does <person> smoke query, and is 
updated by the input utterance just above. 

Tell <person> to stop smoking. If <person> is resolvable, and a smoker, then 
the XO says “<person>, stop smoking”, and 
<person>’s smokingQuantity slot is set to null, 
effectively decrementing the number of 
smokers.  If <person> is not a smoker, the XO 
says that the task cannot be done. 

Who are the smokers? Like ‘how many smokers are there’, this query 
checks the knowledge base to see who is a 
smoker, but instead of just counting, it puts 
them into a list. 

 


