
AN AUTHORING TOOLKIT FOR SIMULATION ENTITIES

Daniel Fu, Ryan Houlette, and Oscar Bascara
Stottler Henke Associates, Inc.

San Mateo, California

Abstract
Instructors and analysts within the military community have noted the possibility of using video games for training
or analysis purposes. Game developers, however, often deviate from actual doctrine. Unfortunately, the instructor
or analyst is often left with no means to modify the entity behavior to conform to doctrine. At the same time, there
has been interest in the Artificial Intelligence research and game development communities as to whether it is
possible to create an “AI toolkit.” Developers could use such a kit to create the entity behavior in a game quickly
without having to start from scratch. In the ideal case, a kit would consolidate the existing branches of useful work
in the field, thus providing developers easy access to the fruits of mature research.
In this paper we describe some initial steps towards a solution for both communities. There are two parts to our
work. First, we have created an authoring tool that enables a developer to create entity behavior using a graphical
“drag and drop” interface to quickly build up complex behavior. Second, we have created a runtime engine that
works in conjunction with a simulation to operationalize the behaviors defined in the editor. The authoring tool
allows authors to rapidly build complex behavior, while the runtime engine is built on well-understood game
technology.

Biographical Sketches
Daniel Fu is a project manager and software engineer at Stottler Henke Associates, Inc. (SHAI). His research
interests are in Artificial Intelligence (AI) autonomous agents and planning. While at SHAI, he has applied AI
techniques to a number of intelligent tutoring systems and autonomous agents projects. Dr. Fu holds a Ph.D. in
computer science from the University of Chicago.
Ryan Houlette is a project manager and software engineer at SHAI. His primary interests lie in the areas of
intelligent interfaces, autonomous agents, and interactive narrative. During his stay at SHAI, he has participated in
the development of a wide range of AI systems. Mr. Houlette is currently leading a project to develop a mixed-
initiative scheduling system that will include as a core component a rich capacity for human interaction and
collaboration. He holds an M.S. in computer science from Stanford.
Oscar Bascara is a consulting software engineer at SHAI. His interests include behavior network modeling and user
interface design. He holds an M.Eng. in electrical engineering from Cornell University and an M.A. in mathematics
from the University of California at Berkeley.

AN AUTHORING TOOLKIT FOR SIMULATION ENTITIES

Daniel Fu, Ryan Houlette, and Oscar Bascara
Stottler Henke Associates, Inc.

San Mateo, California
fu@shai.com, houlette@shai.com, bascara@shai.com

INTRODUCTION

Recently, instructors and analysts within the military
community have noted the possibility of using video
games for training or analysis purposes. The reason is
that video games have become close to real life: better
graphics and better entity behavior. Game developers
build games for entertainment purposes, however, and
thus deviate from reality when it suits them, unfettered
by any actual doctrine. The absence of realistic
doctrine is most evident in real time strategy or turn
based games where entities do not behave as they
would in the real world. Unfortunately, the instructor
or analyst is often left with no recourse to modify the
existing entity behavior to conform to doctrine. At the
same time, there has been interest in the Artificial
Intelligence (AI) research and game development
communities as to whether it is possible to create an
“AI toolkit.” Developers could use such a kit to create
the entity behavior in a game quickly without having to
start from scratch. In the ideal case, a kit would
consolidate the existing branches of useful work in the
field, thus providing developers easy access to the fruits
of mature research.
In this paper we describe some initial steps towards a
solution for both communities. There are two parts to
our work. First, we have created an authoring tool—
also known as the “behavior editor”—that enables a
developer to create entity behavior using a graphical
“drag and drop” interface to quickly build up complex
behavior. An immediate benefit is that an end user
could use the same editor to modify entity behavior
after release. Second, we have created a runtime engine
that works in conjunction with a simulation to
operationalize the behaviors defined in the editor. The
engine technology is based on finite state machines.
State machines are the most common way to control
entities within a simulation, and appear to be the most
appropriate place to begin a toolkit.
The rest of the paper is organized as follows. First, we
describe the overall system architecture, the various
components, and their roles. Second, we discuss
aspects of the two games we’re adopting as testbeds.

Next, we describe our representation for describing
entity behavior. Fourth, we describe how the runtime
engine works. We end with a summary and lessons
learned.

SYSTEM OVERVIEW

There are two major components to the system: the
behavior editor and the runtime engine. Figure 1 shows
these two major components in two corresponding
rectangles. The left is the authoring component which
generates a behavior library for a simulation entity; the
right is the runtime portion where the engine controls
entities within the simulation.

Authoring Runtime

Runtime
Engine

Interface

Simulator

Behavior
Editor

Predicate &
Action

Declarations

Behavior
Library

Predicate &
Action

Definitions

Declarations
Editor

Figure 1: System Overview

Two editors constitute the authoring component: the
declarations editor and the behavior editor. The
declarations editor supplies a basic vocabulary of
predicates and actions that serve as building blocks for
the behavior editor. A developer uses these blocks to
assemble complex behaviors for the library.
The runtime component references the behavior library
to direct entities in the simulator. It does so indirectly
through communications with an interface module
residing between the engine and simulator. This
interface was originally a basic framework in which the
developer deposited computer code to operationalize
the predicates and actions. During development, as the
types of information available to entities, and their

capabilities, become better known, the respective
predicates and actions will be updated both in the
declarations editor and the interface.

TESTBEDS

Our initial work started with a video game called “Half-
Life,” which is a multiplayer first-person shooter.
Because parts of the source code were released to the
public, programmers are able to make their own
modifications, or “mods,” to the game, thereby creating
altogether different environments and games. We used
“Team Fortress”—a mod emphasizing teamwork in
“capture the flag” scenarios. Intelligent entities were
created to work at tactical, operational, and strategic
levels. For example, we created a defensive team
where scouts patrolled routes as well as areas where
threats were detected. As threats were detected,
reserves were dispatched to handle them. Depending
on the outcome, more reserves were committed, or
allowed to resupply themselves. One entity per team
was appointed the leader who gave orders to
teammates. All coordination happened through text
communications within the game, thus a human player

could issue commands to artificial teammates. We later
generated offensive teams; e.g., a simple bounding
overwatch involving two entities.
We later switched to another mod “Counter-Strike,”
which features hostage, bomb, or escort situations with
realistic weapon models. For example, counterterrorists
must rescue hostages within an allotted time while
terrorists strive to hold the hostages. A round ends
when either hostages have been rescued, or all members
of a team are eliminated. The winning team is
rewarded with resources to purchase better equipment
for the next round. Because teams are rewarded, there
is a much greater emphasis on teamwork. We are
currently implementing better movement techniques.
Our second testbed is “Civilization”—a popular turn-
based game. This game is markedly different from
Half-Life, emphasizing strategy without real-time
pressures. The objective for each player is to build a
civilization starting from the beginning of history, and
either conquer all enemies, or become extremely
advanced in technology. Players can decide whether to
attack or ally with opponents, research newer
technologies to further their economic and military

Figure 2. A screen snapshot of the behavior editor.

capabilities, change the form of government, and
determine the level of taxation. Work in this domain is
in the initial stages. We are using an open source
version of the game called “FreeCiv.”

BEHAVIOR EDITOR

The behavior editor is a standard Windows application
featuring a “drag and drop” interface, enabling
developers to quickly construct complex behavior
visually. Because we use a visual representation, we
believe the AI is exposed enough so that non-
programmers could potentially use it to program their
own behaviors, or at least understand how existing
behaviors work.
Figure 2 shows a sample screenshot of the application
showing a behavior for Team Fortress. The left pane
holds the list of defined behaviors. Whenever the user
selects a behavior, its definition appears in the right
pane. In this instance, the user has selected “DEMOH.”
It appears as a set of rectangles connected by directed
arcs with ovals. These are finite state machines
(FSMs). As stated earlier, our authoring tool uses the
notion of FSMs to describe behavior. Because we
depart from the technical definition of a basic FSM, we
refer to our FSMs as “behavioral transition networks”
or “BTNs” for short. BTNs are hierarchical in nature
and consist of two types of units: nodes and transitions.
A node in a BTN represents an action or behavior that
the entity will perform. A transition shifts the runtime
focus from one node to another, but only if its set of
predicates are satisfied.
The DEMOH behavior is a high-level behavior that has
the entity pick a random destination and then move
towards it using the NAVCOMBAT behavior. If the
entity dies, it should SPAWN in another location. If the
entity is low on health, it should heal itself by going to
a supply room to Replenish. In either case, when done,
it should resume its original activity by picking a new
destination, and so forth. Note that parameters appear
in parentheses after the behavior/action name.

REPRESENTATION

In this section we describe the vital elements that make
up the behavior editor and power the runtime engine.
Recall that behaviors are composed of nodes and
transitions. Three nodes in a BTN are of special
significance. The current node of a BTN denotes the
action or behavior currently being carried out by the
associated entity; a given BTN may have exactly one
current node at a time. The initial node of a BTN is

simply the node with which the BTN begins execution
(i.e., the BTN’s initial current node). There can be only
one. In Figure 2, the “None” action is the initial node.
If the current node is a final node, the behavior is
considered complete.
Note that the action contained in a node may be either
primitive—for example, RELOAD(current_weapon) to
reload the weapon in hand—or complex—for example,
MOVETO(x,y) that will navigate the entity to a known
location. Primitive actions interact with the game
engine through the interface module; e.g., a human
player may just press the “R” key to reload while the
interface would mimic pressing the same key for the
artificial entity. A primitive action may also represent a
deliberative or perceptual activity that has no direct
physical effect on the game world, such as invoking a
path planning algorithm. Complex actions are handled
completely within the engine. Ultimately, they will boil
down to primitive actions.
As an example, suppose a PREPAREATTACK behavior
incorporates a transition to a SELECTBESTWEAPON
BTN as part of the preparation for an attack. The latter
will reach a final node when it determines the best
weapon in the arsenal. At that point, the
PREPAREATTACK behavior will proceed, perhaps next
invoking a behavior to switch to the best weapon.
Know that complex actions always include an initial
node and usually include a final node.
The current node changes according to a transition,
which is a directed arc connecting two nodes X and Y
(or looping from one node back to itself) and indicating
a potential direction of control flow. Each transition
has a set of logical conditions that, when satisfied,
make the transition active or satisfied. A transition is
said to be active or satisfied if its conditions return a
“true” result; an active transition indicates that the BTN
may change its current node from node X to node Y.
We refer to the logical conditions as a trigger. Most
triggers ultimately rely on predicates to return useful
values. Here, a predicate refers to an information-
extracting operation from the interface to the game. For
example, the condition

DISTANCE(x,y) > 70
is “true” when the DISTANCE predicate—the distance
between two coordinates x and y—is greater than 70.
Figure 3 shows a hypothetical MOVETO action that
contains nodes and transitions. The initial node is the
upper left rectangle; the final, the lower right. See a
cycle of determining the next step to take, and taking
the step.

Determine-
NextStep(x,y) TakeStep

Finished

Reached-
Destination(y)

NotReached-
Destination(y)

Figure 3. Simplified MOVETO(x,y) complex action.

The “x” and “y” associated with the DISTANCE
predicate and MOVETO action are variable parameters.
A variable confers a BTN the ability to store data.
Typically, variables keep state information, or are
parameters to a predicate or action (either primitive or
complex). Each BTN comes with its own set of user-
defined weakly typed variables. In Figure 2, there is
only one variable called “gMe,” which merely refers to
itself. Other pieces of information, such as the amount
of health “Get(‘health’)” could be assigned to a
variable, if so desired.
When a variable is assigned a value, we refer to this
action as a binding. The engine processes bindings
when invoking a new BTN, when traversing a
transition, when performing a node’s action, and when
finishing a BTN. Values can be any one of four types:
number, string, entity, vector, and data.

RUNTIME ENGINE

In this section we describe how the engine processes
BTNs. Recall that BTNs may be hierarchical—that is,
any node can embody an arbitrary BTN. When such a
node becomes current, execution passes to the BTN’s
initial node. Each time this occurs, a new execution
frame is put on the execution stack. The execution
frame holds the behavioral state at a level within the
BTN hierarchy. This includes a BTN, current node,
and variable values. The execution stack maintains the
set of frames, thus encapsulating the entire hierarchy.
Each entity has its own stack.
The run engine’s basic execution cycle for an entity is
as follows:

function Execute() {
// Do the current action
CurrExFrm = current (topmost) execution frame;
CurrNode = CurrExFrm->currentBTN->currentNode;
CurrNode->DoAction();

// Determine the next current node
ExFrm = bottommost frame on B’s execution stack;
while (ExFrm) {

// Find an active transition
CurrNode = current node in ExFrm;
Transitions = CurrNode’s transitions (possibly ordered)
for each transition T of Transitions {

if (T->Evaluate() == true) {
// Pop all execution frames above ExFrm
B->Pop(ExFrm);
// Follow transition by changing CurrNode
T->Traverse();
// Done with this entity
return from function;

}
}
// Try the next execution frame up
ExFrm = ExFrm->next;

}
}

Node’s function DoAction() {
if (action is in a final node) {

sync BTN parameters with passed-in variables;
pop current execution frame from stack;

}
else if (action is a primitive action) {

do the primitive action;
sync parameters with passed-in variables;

}
else if (action is a complex action) {

NewBTN = new BTN for complex action;
NewBTN->currentNode = NewBTN->initialNode;
NewFrame = new execution frame;
NewFrame->currentBTN = NewBTN;
push NewFrame on top of the execution stack;

}
}

Transition’s function Traverse() {
apply transition’s variable bindings to BTN;
// Update the current node at this level
NewCurr = terminating node of this transition;
Set current node of current execution frame to NewCurr;

}

Note that only the basic execution stack traversal is
hard-coded. All major decision points in the
architecture—for example, selecting which transition to
traverse out of the several that are active—are provided
with “hooks” so that default decision algorithms can be
easily modified and extended, even at runtime.

Example of Execution Flow
To give a rough idea of how the pseudocode given
above works, here is a simple example. It refers to
Figure 4 that shows the current execution state for a
single entity. The rectangles denote nodes, and the

arrows between them represent transitions. Nested
nodes indicate different levels of the hierarchy, and
nodes with dashed borders are current nodes (in their
particular execution frame).

BTN L

BTN Q

Node U

Node M Node N

Node S

Node R

Node W

Node V

Figure 4: Current execution state for a single entity.

At the current moment, the execution stack for this
entity looks like this:

Execution
Frame #

Current Node Possible
Transitions

3 U U→V, U→W
2 Q Q→R, Q→S
1 L L→M, L→N

Thus, on the next iteration when the entity starts the
execution cycle, the first thing that will happen is that
the engine calls U→DoAction(), since U is the current
node in the topmost execution frame.
Next, starting with the bottom of the stack and working
up, the engine evaluates transitions until one is
satisfied. Evaluating transitions in this order allows
more general, ongoing actions (i.e., higher-level plans)
to take precedence over low-level, short-term actions.
Thus, the possible transitions for execution frame #1
are checked first:

TLM→Evaluate() == false
TLN→Evaluate() == false

Suppose that neither of these is satisfied. Evaluation
now moves to execution frame #2:

TQR→Evaluate() == true
Note that since TQR is now active, the engine never
checks TQS. The engine always short-circuits by
following a satisfied transition immediately.
The engine calls TQR→Traverse(), which pops off the
now-irrelevant execution frame #3, sets the current

execution frame to be #2, and sets the current node in
that frame to be R.
At the end of the execution cycle for this entity, the
execution stack looks like:

Execution
Frame #

Current Node Possible Transitions

2 R not shown
1 L L→M, L→N

In the case where the engine finds no active transitions,
the current node does not change. Thus,
U→DoAction() would be called again and again until a
transition becomes active.

Transitions in Execution Flow
From the current node, the engine evaluates transitions
until one is active, then follows that transition. Because
one may wish to prefer one transition to another, each
transition can have an assigned priority relative to other
transitions. This priority compels the engine to
evaluate transitions in a pre-specified order. Thus, the
engine always traverses the highest-priority active
transition. For efficiency reasons, the runtime engine
will not evaluate all transitions; instead it sequentially
evaluates until one becomes active. The ordering on
transitions is a strict ordering. How this ordering is
determined is up to the author. Currently, each
transition is automatically assigned a priority number.
Before evaluating transitions, the engine organizes
them according to priority.
The runtime engine determines whether a given
transition is active by calling its Evaluate() method.
This method invokes the decision procedure for the
transition and returns a true or false response.
There are two main stages to the evaluation of a
transition. First, all variable bindings for the transition
are applied one at a time in the order specified in the
behavior editor. When a binding is applied, the
expression on the right-hand side is evaluated, making
all variable substitutions and function calls as
necessary. The resulting value of the expression is then
assigned to the left-hand variable.
In the second stage of evaluation, the transition
conditions are evaluated one-by-one, in the order
specified by the author, until either:
� A condition evaluates to false, in which case

Evaluate() will return false, but not before
rescinding the bindings.

� All conditions have been evaluated and have
returned true, in which case Evaluate()returns
true.

Actions in Execution Flow
The execution flow for actions is very similar to that for
transitions except there is an additional stage to handle
action parameters. In the first stage, the engine
evaluates all variable bindings for the action in order,
just as for transitions. In the second stage, the engine
invokes the action along with its parameters bound to
values. In the third stage, the resulting values of the
action parameters are passed back to the variables to
which they are bound. If a parameter is not bound to a
variable, its value is not returned.

Example
MyLoc and TargetLoc are BTN variables of type vector
and currently have the values [10, 392, -47] and [70,
200, -10], respectively. Path is a variable of type data,
and its current value does not matter since it is being
used solely to hold the return value of the action. There
are three variable bindings for this node:
� src = MyLoc
� dst = TargetLoc
� path = Path
The action associated with this node is:

GeneratePath(src, dst, path)
After the first stage of execution, the action parameters
will have the values
� src = [10, 392, -47]
� dst = [70, 200, -10]
� path = <don’t care>
The action is then invoked with these parameters:
GeneratePath([10,392,-47], [70,200,-10], <don’t care>)
It deliberates and produces a path, stored internally in
the path variable. After the action has completed its
execution, the internal value of path is passed back to
the BTN variable Path in the third stage, at which point
it becomes accessible by the rest of the BTN.
Note: In the case where no active transitions exist from
the current node of the top-most execution frame, the
node’s action will repeat. If GeneratePath is a
primitive action, Path will be modified continually. If
the action is complex—i.e., a BTN—then Path will
only be modified when the BTN reaches a final node.
As in the example, sometimes one or more parameters
of an action are used only to capture return values from
the action. At the same time, other types of actions
may not modify their parameters at all. This distinction
will be explicit in future releases of the behavior editor.

Currently, primitive action parameters are “in,” “out,”
or “in/out” to reflect input, output, and input & output
parameters. In C++ terminology, one can think of these
as passing by value, reference, and reference. The
editor will make the distinction for primitive actions
and predicates, but the engine does not enforce correct
usage.

Variables
As we have seen, variables play an important role in
defining behavior. Thus far, it’s been necessary to
explain BTN variables as we described other aspects of
the representation and engine. In this subsection we
underscore the salient points.

In Execution Flow
The engine strictly controls when BTN variable values
may change. They change at four points during the
execution flow:
1. Invoking a BTN: The BTN’s parameters will

receive initial values from the calling BTN prior to
instantiation of the initial node.

2. Processing a current node: When calling an
action, the engine calculates values for bindings
before and possibly after.

3. Evaluating a transition: The engine calculates
values for bindings before evaluating the
conditions. Bindings take effect only when all
conditions are true, otherwise the bindings are
undone.

4. Leaving a BTN: The BTN’s parameters will retain
modified values when the engine reaches a final
node. If it doesn’t, the BTN’s parameters (if any)
remain unaltered.

Types
Each BTN maintains a set of typed variables that can be
accessed by all transitions and nodes in that BTN.
Valid variable types comprise number, string, entity,
vector (for vectors or 3D coordinates), and data (for
arbitrary data types).

Bindings
Each transition has associated with it a decision process
that, when executed, determines whether the transition
is currently active (and thus able to be traversed).
Typically, this decision process consists of the
evaluation of a list of logical conditions, which in turn
are defined over a set of BTN variables. These
variables acquire their values through explicit variable
bindings.
Each node or transition in a BTN can have associated
with it one or more variable bindings. Each variable

binding creates a mapping between a specific variable
and an author-specified expression, which may include
references to other variables or to functions that
compute further information. The following are all
valid bindings:
� x = 30.5 [number]
� nearest_threat = NearestThreat() [entity]
� range = RangeToEntity(nearest_threat)

[number]
� foo = (x * range) –

ComputeInterestingValue() [number]
� utterance = ’hey’ [string]
Note that a binding must specify the arguments to a
function if that function requires arguments (as in the
third binding above). Those arguments may be literal
values or variables, and they are passed by value to the
function so that they cannot be changed.
There are two reasons to have explicit variable
bindings. First, a transition or node typically involves
one or more routines that gather, process, and act upon
information. Frequently, these routines have
information relevant to other transitions and actions.
So instead of gathering the information again the next
time it is needed, the transition or node caches the
information. The second reason for variable bindings is
that they make information visible, which in turn
simplifies the authoring process by making explicit the
data relationships between the nodes and transitions in a
BTN.

Variables as Parameters
Each predicate and action is hard-coded with a set
number (which may be zero) of typed parameters.
These parameters represent the data transactions
between the predicate or action and the rest of the world
that are exposed to the author. Any internal
manipulations of the predicate or action that do not
affect its parameters are hidden and inaccessible. The
engine treats parameters exactly like normal BTN
variables except that they are not global; that is, they
exist only for the action or predicate.
When one adds a new node to a BTN and specifies the
associated action, one must also specify a binding for
each parameter of that action. These bindings behave
just like normal variable bindings with one exception:
they are evaluated twice, once before execution (like
normal bindings) and once after. This allows an action
to “return” one or more values, which is necessary to
support perceptual or deliberative actions whose sole
effect is the generation of useful information.

Predicates, by definition, return a value that can be
bound to a variable.

Diverting Flow of Control: Interrupts
Occasionally an entity needs to interrupt its normal
execution flow to handle an ancillary task. The task,
however, does not demand the entity to refocus all
computational resources towards completion of the
task. Rather, the task can either be small enough to be
executed via a temporary frame push on the execution
stack—keeping the stack intact. This type of complex
behavior occurs as a result of a special transition,
referred to as an “interrupt” transition. We describe its
use in this section.
Sometimes it’s necessary for an entity to perform some
small, but frequent task. Consider an entity that needs
to reload its weapon, or parse an incoming message
from a teammate. These occurrences are sure to
happen; yet they are not necessarily germane to any
singular task. We introduce the notion of an “interrupt”
to handle such occasions. An interrupt transition
causes the engine to deviate from the normal flow of
pushing/popping execution frames by pushing a brand
new execution frame and continuing from there. This
type of transition, when complete, will leave the
previous execution stack intact, allowing the entity to
continue as before. This is important because if we
wanted a regular transition to handle the interruption, it
might clear the execution stack, or force the author to
handle the task at a lower level in the behavior
hierarchy. For example, suppose a Half-Life bot is
following a path to some destination. If its weapon has
small amount of ammunition, it should reload the
weapon in preparation for the next appearing threat.
This type of task should be the consequence of an
interrupt transition. There are two reasons. First,
suppose we used a regular transition from the abstract
“navigation” behavior to the “reload” behavior. When
followed, the portion of execution stack concerning
navigation would be thrown out, supplanted by the
behavior to reload the weapon. But after reloading, all
the information would have to be restored by re-
invoking the navigation behavior. This may, in general,
be a costly overhead. Second, suppose we created
regular transitions within the lower levels of the
navigation behavior thereby pushing additional frames
onto the stack instead of popping. Thus, after (say) the
entity takes a step forward, we check and deviate to
reload the weapon. This works, but would be arduous
indeed. We’d have to construct transitions within every
conceivable task. Further, it’s counterintuitive to
bother about reloading a weapon within the definition

of a navigation task, never mind creating confusing
spaghetti networks.
Now that we have defined an interrupt transition and
how it affects the execution stack, one may wonder
whether interruptions are recursive. The answer is a
qualified “yes.” There are certain restrictions on how
interrupts are handled. First, when the engine places an
interrupt transition’s destination behavior (a complex
action) in an execution frame, transitions in some
frames must be ignored. These include the frames
starting from the originating frame (from where the
interrupt happened) up to, but not including, the
interrupt’s frame. To see why, consider this execution
stack:

Execution
Frame

Current
Node

Possible Transitions

I I1 I1→ I2
C C1 C1→ C2
B B1 B1→ C, B1⇒ I
A A1 A1→ B, A1→ D, A1⇒ J

This stack is the result of behavior “C” being
overridden by an interrupt transition taking effect in
behavior “B” (B1⇒ I). Frame “I” is the new interrupt
frame. Execution proceeds by checking the transitions
in frames “A” and “I” only. If the engine followed a
transition in “B” or “C,” a counterintuitive situation
develops. Namely, for “B,” infinite interrupts would be
placed on the stack unless evaluation of B1 has side
effects; for “C,” its next transition would have the
engine place a new frame above frame “I,” thereby
undermining the interrupt.
Note that satisfied transitions appearing in frames “A”
or “I”—either of regular or interrupt—would be
followed. A regular transition originating in “A” (A1→
D) would clear the stack above “A” and place a new
frame as so:

Execution
Frame

Current
Node

Possible Transitions

D D1
A A1 A1→ B, A1→ D, A1⇒ J

An interrupt transition originating in “A” (A1⇒ J)
would be placed on the stack like so:

Execution
Frame

Current
Node

Possible Transitions

J J1

Execution
Frame

Current
Node

Possible Transitions

I I1 I1→ I2
C C1 C1→ C2
B B1 B1→ C, B1⇒ I
A A1 A1→ B, A1→ D, A1⇒ J

After the “J” interrupt completes, “I” resumes.

LESSONS LEARNED

Hierarchical FSMs are a vast improvement over flat
ones. Initially we started using legacy code which
implemented finite state machine technology. After
authoring some sample behaviors, it became arduous to
improve the behavior. Attempts to do so resulted in
spaghetti-like graphs. A transition to a hierarchical
representation greatly simplified the authoring process,
while making the runtime engine more complex.
Defining an expressive vocabulary is nontrivial,
especially for games or simulations that are multiplayer
in nature. Because we implemented an AI for an
otherwise non-AI game, we had to declare all useful
predicates and actions. Because the game was not
designed with artificial players in mind, information
extraction for predicates and actions in the game were
not straightforward to implement. The open source
code for our next testbed, FreeCiv, is much more
accommodating as it features AI already, making it
much easier to improve.
Defining a separate runtime engine and interface
encourages a clean separation from the simulation
itself. In creating the interface we often found the
necessary pieces of data and functions residing within
the server side of the simulation. Development of a
game happens in months, not years. We believe a
developer starting with an existing runtime engine will
end with a cleaner separation of code modules, making
them easier to reuse.
Visual authoring works well, but better visual
metaphors are needed. So far, the authoring process is
familiar to people who have some programming
experience. However, we lack a good metaphor for
visual programming that can also convey the
complexities of the engine.

SUMMARY

This paper has described two important contributions to
the field of simulation development. The first is an
authoring toolkit that, if used in development, will
allow end users to customize entity behavior in a

simulation. Moreover, end users can reuse existing
work, thus speeding the development of other behavior.
The second contribution is an initial step towards a
body of work encapsulating common AI needs for
simulation and game development.

ACKNOWLEDGEMENTS

This research is supported in part by Air Force
Research Laboratory grant F30602-00-C-0036.

	INTRODUCTION
	SYSTEM OVERVIEW
	TESTBEDS
	BEHAVIOR EDITOR
	REPRESENTATION
	RUNTIME ENGINE
	Example of Execution Flow
	Transitions in Execution Flow
	Actions in Execution Flow
	Example

	Variables
	In Execution Flow
	Types
	Bindings
	Variables as Parameters

	Diverting Flow of Control: Interrupts

	LESSONS LEARNED
	SUMMARY
	ACKNOWLEDGEMENTS

