
APPLYING A GENERIC INTELLIGENT TUTORING SYSTEM (ITS)
AUTHORING TOOL TO SPECIFIC MILITARY DOMAINS

Dick Stottler

Stottler Henke Associates, Inc.
San Mateo, CA.

Daniel Fu

Stottler Henke Associates, Inc.
San Mateo, CA.

Sowmya Ramachandran

Stottler Henke Associates, Inc.
San Mateo, CA.

Terresa Jackson

Air Force Research Laboratory
Brooks AFB, TX

Abstract

This paper describes our experience in applying a generic Intelligent Tutoring System (ITS) authoring tool to
specific training applications. The Internet ITS Authoring Tool (IITSAT) was developed to greatly decrease the
time to develop tactical decision-making ITSs and was based on the experience from several previous ITS projects.

IITSAT allows ITS authors to organize course principles, articulate teaching methods, specify courseware, and
develop a case base of scenarios for students along with a specification of how the student’s actions will be
evaluated and his mastery of the required knowledge assessed. Every scenario defined in IITSAT must have an
existing simulation. Evaluation of the correctness of actions and inference of the student’s knowledge may be
performed by external code, or with libraries supplied with IITSAT. They support both the use of finite state
machines (FSMs) to evaluate a student’s actions in a free play simulation, or comparison to correct and likely
incorrect solutions for each scenario. There are several different instructional methods to choose from including
who should control the sequence of instructional events - the student, the author, or the ITS and what that sequence
should be.

The FBCB2/Tactical Decision-Making ITS prototype teaches armor company commanders by presenting course
material and examples, then testing the commander in tactical situations displayed as FBCB2 overlays or in a
commercial tank simulator interfaced to the actual FBCB2 software and the ITS. By using IITSAT this ITS was
developed in a small fraction of the time normally required. The FSMs successfully evaluated the student’s actions
in the free play simulation. IISAT’s comparison libraries successfully evaluated a student’s battle plan with the
addition of domain-specific code. IITSAT’s ITS engine could usually be specified to make appropriate instructional
decisions. Interfacing IITSAT to the simulation and to FBCB2 was difficult and there were some instructional
modeling limitations.

The next ITS to be developed with IITSAT was an F/A-18 Air Tactics ITS prototype which intelligently evaluated a
pilot’s actions during mission rehearsal to practice perishable skills. IITSAT was interfaced to ACM, a
commercially available flight simulator which was altered to output a log of actions and events. FSMs evaluated the
correctness of the pilot’s actions and inferred mastery of different principles. IITSAT then suggested what type of
scenarios should be performed. The Air Tactics ITS was developed in a small fraction of the normal time and
IITSAT did not need to be modified, but FSMs were less general than planned.

An authoring tool was very helpful in developing these and other ITS applications but this was partly based on the
fact that the authoring tool could be modified to increase its generality. There was also flexibility in the

functionality of these ITSs. A major potential problem is interfacing the authoring tool to existing simulations in
cases where the source code is not available.

Bibliographic Sketches

Dick Stottler co-founded Stottler Henke Associates, Inc. (SHAI), an artificial intelligence consulting firm in San
Mateo, California in 1988 and has been the president of the company since then. He has been principal investigator
on a number of intelligent tutoring system projects conducted by SHAI. Currently, he is working on an intelligent
tutoring system to teach armored company commander tactical decision-making and C4I system skills for
STRICOM. He has a Masters in computer science with a concentration in artificial intelligence from Stanford
University.

Dan Fu is an AI Researcher and project manager at SHAI. Dr. Fu currently leads the IITSAT project and an
Immersive Wargaming project. Previously he was involved in the development of an AWACS simulator and has
interviewed AWACS weapons directors. Most recently, he lead the knowledge engineering for an ITS to teach
analysis principles in combating terrorism and attended the military intelligence course entitled "Intelligence for
Combating Terrorism." Dr. Fu spearheaded the effort to convert the course to an Internet-accessible ITS to help
educate students world-wide. Dr. Fu has served as a technical reviewer for the AI Journal and as a program
committee member for the Second International Conference on AI Planning Systems (AIPS-94). He received his
Ph.D. in Computer Science from the University of Chicago and his B.S. in Computer Science from Cornell
University.

Sowmya Ramachandran is an AI Researcher and project manager at SHAI. She has a strong background in a wide
variety of Artificial Intelligence techniques, including Intelligent Tutoring Systems, Machine Learning, and Case-
based Reasoning. She has twelve years of experience in AI research and development. She also has extensive
experience in developing educational software. Dr. Ramachandran is currently the senior person involved in
developing an ITS for adult literacy enhancement. She is currently also developing a general-purpose ITS authoring
environment for the Air Force, an ITS to teach Algebra to at-risk high-school students, and a general-purpose
architecture for including affective, personified, pedagogical agents in training applications. Dr. Ramachandran
earned a Ph.D. from the University of Texas at Austin in 1998.

Terresa Jackson is a program manager and scientist with the Air Force Research Laboratory at Brooks AFB, TX.
She manages contractor, military and civilian research and development teams in design and development of
advanced training technologies, intelligent training systems, and distance learning technologies for individual and
team training requirements. Ms. Jackson holds a Masters Degree in Psychology with advanced courses in
instructional design, expert systems development and business management. Ms. Jackson with her U. S. Army
customer received the United States Distance Learning Association Award for Excellence in 1999. Ms. Jackson
also received the distinguished honor of the Human Effectiveness (HE) Director's Award in 2001."

APPLYING A GENERIC INTELLIGENT TUTORING SYSTEM (ITS)
AUTHORING TOOL TO SPECIFIC MILITARY DOMAINS

Dick Stottler

Dan Fu
Sowmya Ramachandran

Terresa Jackson

INTRODUCTION

This paper describes our experience in applying a
generic Intelligent Tutoring System (ITS) authoring
tool to specific training applications. We will first
describe that tool and the ITS projects which
contributed to its development. We will then discuss
the applications that were developed using the tool. For
each application we will describe its functionality and
the process and benefits of using the tool as well as the
difficulties. Finally we will summarize the lessons we
have learned in applying the generic tool to several ITS
applications and discuss the future work.

IITSAT DESCRIPTION

IITSAT was developed specifically to greatly facilitate
the development of ITSs for tactical decision-making.
Tactical instructors universally agree that coached
practice of decision-making in tactical situations is
most important for development of a high-level of
expertise in tactical decision-making [Lussier IITSEC
2000 ref]. Therefore, IITSAT was designed to provide
instruction centered around scenarios (i.e. cases) and
required principles.

In case-based ITSs each case (or scenario) should
include (1) a multi-media description of the problem,
which may evolve over time (as in tactical simulated
scenarios); (2) a description of the correct actions to
take, possibly including order-independent, optional,
and alternative steps; (3) multi-media explanations of
why these steps are correct; (4) the list of methods
which determine whether the steps have been correctly
executed by the student; and (5) the list of principles
required to know the correct action to take, typically
extracted from the explanations that accompany the
solution steps.

Cases for Correct Action Determination
The most difficult and domain dependent aspect of the
ITS (after the simulation itself) is the determination of
the correctness or incorrectness of a student’s action.
Since there are domains where it is impractical to build
a general expert system to produce the correct actions,
the expert’s knowledge of the correct actions specific to
a scenario are stored within the scenario itself. This
knowledge typically takes different forms, based on the
domain and the ability of the student to alter the flow of
the scenario in unexpected or multiple ways. The

simplest representation lists the correct actions at the
appropriate time in the scenario. Obviously this will
only be applicable if the flow of the scenario is
unaltered by actions of the student or if at each mistake,
the student is immediately corrected, and thus the
scenario’s timeline is restored. For each scenario,
methods are required for comparing these correct
actions to the actual actions produced by the student.
These methods may also be able to assess which
principles associated with a particular action the student
knows and which ones he doesn’t, based on a whole or
partially correct action. For example, in some AWACS
Weapon Director (WD) scenarios, the WDs are
supposed to advise rather than command. Thus the
scenarios can be structured such that the simulated
pilots ignore WD mistakes, and the scenario timeline
proceeds unaltered. The WD actions are the advice,
specific utterances made to specific pilots over the
simulated radio, usually less than 20 words each. The
correct actions are the utterances of expert WDs,
previously recorded while they played the scenario.
The software methods to compare the correct actions to
the student’s actions must convert each to a text
representation. The WDs, according to their orders, are
supposed to use a specific grammar. This allows the
text to be parsed and compared piece by piece. The
software methods can then assign knowledge of
principles based on subparts of the student’s utterance.
Some principles, such as “give the most important
information first,” actually span multiple actions, as
well.

Of course these types of scripted scenarios preclude one
of the most important learning opportunities - for
students to see the results of their own mistakes.
Mistakes a WD makes in real missions can easily cause
loss of life, including his own. So there is a strong
desire to use more flexible and dynamic simulations
and scenarios, where a student’s actions can radically
affect the outcome. Since these simulations are
typically continuous, there are an infinite number of
variations that different students can create. In fact, in
these types of situations the same scenario never plays
exactly the same way twice, since minor timing
differences of student actions affect the precise
trajectories of the simulated players. Clearly, listing the
correct action at the appropriate time, based on the way
the expert played the scenario is inappropriate, since
when the student plays the same scenario, his timeline
will diverge from the expert’s, often in radically
different ways. For example, a particular scenario may
dictate that the student remain covert while gathering

information. If he understands how to do this, the
enemy may never detect his existence, and thus never
attack him. However, a student who does not
understand the principles of covertness may turn on his
active sensors, be detected by the enemy, and thus
come under attack. At this point he may correctly
assess the need for and execute several self-defense
actions. These actions were not required of the expert
or of other students in the same scenario who
performed the information gathering tasks in the
correct, covert way. Yet, they are entirely appropriate
for the situation in which the student finds himself, and
not only should they not be considered incorrect, but he
should also get credit for understanding the appropriate
self-defense principles.

The solution is the other extreme of the forms of
knowledge, in which knowledge of correct actions may
be stored and used is in situations where the system in
no way can produce the correct or all the possible
correct actions but for which the knowledge exists,
within the context of a scenario, to evaluate the
appropriateness of the student’s action. For example, to
refine the location of an enemy platform, an aircraft
may be sent to a general area. To keep the aircraft’s
home platform location unknown, it should take an
indirect route to the area. There may be several factors
to consider when determining an appropriate route,
many of which may be considered commonsensical or
at least not part of the course the ITS is teaching. The
ITS may not include the knowledge required to
generate a good route. Furthermore, there may be a
very large number of acceptable routes. But, for the
purposes of making sure that the student understands
the concept of taking an indirect route to the target area,
it is fairly easy to devise a simple calculation to check
that the route was indirect. One way to represent these
types of scenario specific evaluation machines is using
Finite State Machines (FSMs) which are discussed
later. (Figure 1) shows a FSM used for evaluation in
an ITS prototype developed with IITSAT.

Figure 1. Example Finite State Machine.

Creating an ITS with IITSAT
There are six kinds of knowledge that must be entered
by the domain and/or instructional expert to create an
ITS for a specific domain. These are the case base of
scenarios to be used as examples and exercises, the

hierarchy of principles referenced from those scenarios,
multi-media descriptions which explain each principle,
knowledge used to asses the correctness of student
actions, knowledge used to assess a student’s mastery
of a principle given the history of his performance in
relation to that principle, and pedagogical knowledge.
Methods to enter the scenarios tend to be very domain
specific and closely tied to the simulation. For tactical
scenarios, typically graphical editors are employed
based on an electronic map and intelligent tactical
knowledge entry techniques not particular to ITS
concerns. The principle hierarchy is entered through a
simple tree-based graphical editor as shown in Figure 2.
The multi-media descriptions of principles are entered
using commercial multi-media authoring tools, such as
Macromedia Director. The different ways to represent
the knowledge to determine student action correctness
was discussed in a previous section. In the following
paragraphs we discuss the capabilities for entering
mastery assessment and pedagogical knowledge.

Representation and entry of the knowledge to assess
principle mastery, given a history of actions related to
it, is one of the simplest aspects of the authoring tool.
The author specifies and names the levels of mastery.
For example, those might be novice, intermediate, and
expert. For any principle in the hierarchy, he then
defines the conditions that must be met to attain each
level of mastery. These conditions typically define the
percentage of correct usage of a principle from the last
N actions using the principle in the last M scenarios in a
specified time period. The required parameters are
simply entered using a fill-in-the-blank format. Which
principles the mastery level applies to is determined by
which principle node the author selected in the principle
hierarchy editor. The mastery assessment definitions
defined at a higher level in the hierarchy are inherited
by all of its subprinciples unless over-ridden with a
more local definition.

Figure 2. Principle Hierarchy Editor.

More complicated is the pedagogical knowledge. A
somewhat simplified description follows. The
authoring tool allows different instructional methods to
be defined for different types of students (based on
background and principle mastery) and different
regions of the principle hierarchy. Aspects of an
instructional method include degree of instructional
support; degree of student control; how much
instructional material to present; what kinds of
examples to show, and how many; what kinds of
exercises to present, and how many; type and timing of
debriefing; remediation, and exercise selection.

Perhaps the greatest challenge in designing the
functionality and capabilities of the ITS authoring tool
was maintaining the proper balance between
flexibility/power and usability. By designing a lot of
flexibility in the instructional method specification,
many inputs are required. Our design philosophy is
based on the assumption that domain knowledge
experts (a.k.a. Subject Matter Experts) are more readily
available than pedagogical experts and that pedagogical
knowledge can be generalized over domains. We
therefore have made pedagogical knowledge
specification easy by having the authoring tool
intelligently select default specifications that an author
can choose to over-ride. We are developing a case base
of instructional techniques so that when some
preliminary information about the domain and types of
students is entered, the system selects the most
appropriate default instructional techniques for each
type of student and principle. A Subject Matter Expert
is able to generate an ITS by just specifying domain-
specific knowledge (principles, scenarios, pre-test and
post-test scenarios), and using default specifications for
pedagogical knowledge.

ORIGINATING APPLICATIONS

IITSAT was designed and implemented based on the
experience of developing several tactical decision-
making ITSs. Each included certain methods and
techniques which contributed to IITSAT. These are
described below. The TAO ITS is described in more
detail, since, as described at the end, the newest fleet
version is being converted to IITSAT.

Tactical Action Officer (TAO) ITS

Figure 3. TAO ITS Simulation.

SHAI designed and built for the Surface Warfare
Officers School (SWOS) a low-cost simulation-based
intelligent tutoring system (ITS) for use on standard
PCs as part of SWOS's Tactical Action Officer (TAO)
training program to train Navy officers in high-level
tactical skills in early 1999. The TAO ITS Simulation
interface is shown in (Figure 3). A key objective of the
software is to increase the active training that officers
receive to improve their ability to apply their
conceptual knowledge of tactics. The intelligent
tutoring system presents selected scenarios for the
student to practice different tactical concepts. The
software adaptively selects scenarios for individual
students that practice concepts he or she hasn't yet
practiced or has recently failed. As well as the intrinsic
feedback that free-play simulations naturally provide a
student, the TAO ITS provides detailed, useful extrinsic
feedback to the student once a scenario is finished,
which reviews the student's decisions along with the
related concepts and whether they were passed or failed
(as shown in Figure 4). At this point, the student can
review multimedia material about any concept, or see a
replay of the scenario to review errors.

Figure 4. TAO ITS Debriefing.

TAO ITS follows a scenario-debrief instructional cycle.
That is, it selects a scenario that it believes would be
beneficial for the student, has him perform tactical
decision-making in that simulated scenario, then
debriefs him on the correctness of his actions. It also
provides information on the concepts that it feels he is
deficient in, based on the mistakes he just made.
IITSAT was designed to include this type of
instructional method in its ITSs. But as we transitioned
the TAO ITS for use in the fleet, we found that other
instructional cycles would be required for refresher
training with less knowledgeable students. Therefore,
IITSAT also allows for the specification of different
instructional methods for different types of students and
these include introduction of new material and
presentation of examples, before the student is forced to

perform in a simulated scenario. TAO ITS
communicated to its simulation through an event log
file, which was analyzed using Finite State Machines
(FSMs) definable by instructors. TAO ITS was
designed this way, since early in the project interfacing
to as-yet unspecified simulations was deemed important
and a log file interface make this very simple.
Furthermore, the restriction of feedback to the student
occurring only after the end of the scenario was not
considered important since the debrief, or After Action
Review (AAR), was considered to be the primary
feedback mechanism. The FSM evaluations proved so
successful that TAO ITS's FSM code was incorporated,
with only minor modifications into IITSAT.
Other ITSs
An Intelligent Tutoring System was developed to teach
the principles and processes of sonar image analysis.
The ITS complements the existing interactive
courseware by providing practice in simulated acoustic
analysis scenarios, with an automatic debriefing
capability. The ITS models the student's knowledge
and abilities and selects the most appropriate practice
scenarios for each student. The scenarios are created
though an annotation authoring process by expert
acoustic analysis instructors. This ITS contributed its
Principle Hierarchy editor to IITSAT as well as the
concept that the scenario-player may not always be a
tactical simulation. Its scenario player is an annotation
editor which allows the student to annotate an image,
choose different processing options (which are like
different "views" of the same data,) and which only
provides access to the data that would have arrived at
the particular point in time.

An ITS was developed for the Army's Military
Intelligence Training Distance Learning Office at Fort
Huachuca which uses a constructivist approach to teach
principles of intelligence analysis for countering
terrorism. This project contributed the concepts of the
importance of hinting and coaching during scenario
play; the need to specify specific scenarios for specific
parts of the course; the fact that the number of scenarios
may be very small in number; and the requirements of
pre and post testing.

APPLICATIONS CREATED WITH
IITSAT

FBCB2/Tactical Decision-Making ITS
The FBCB2/Tactical Decision-Making ITS teaches the
tactical use of FBCB2, an Army C4I system, and
tactical decision-making to Armor and mechanized
Infantry company commanders. When a new student
logs on he is first asked some questions about his
background, experience, and last FBCB2 training/use.
These questions include level of education achieved,
rank, highest unit commanded, types of units served in,
computer familiarity, BCB2 familiarity/comfort, and
general perceptions as to its usefulness. The ITS uses
this information to make initial estimates as to the
student’s mastery of various principles, including both

tactical knowledge and the use of FBCB2. It is also
used to select scenarios, other exercises, types of hints,
and other forms of instruction. Mastery categories are
Beginner, Novice, Intermediate, and Expert. The
Beginner category for a principle occurs when a student
performs successfully with it less than 20% of the time.
(Novice – 20 to 50%, Intermediate – 50 to75%, Expert
> 75%). Students at the expert or intermediate level for
a principle are never given hints.

If the ITS estimates that the student’s mastery of
FBCB2 principles is low, then before doing simulated
exercises, the student is first put through FBCB2-only
refresher exercises. An introductory lesson explains
with detailed steps how to create an overlay and find
and place the most relevant symbols.

After the FBCB2 refresher exercises (if they were
needed), the ITS begins tutoring the student on general
tactical principles. If it estimates his mastery is
relatively high it proceeds immediately to tactical
decision games presented and answered as FBCB2
overlays. If not, it first presents general tactical
principle courseware. For each tactical decision game
(TDG), the ITS analyzes the student’s plan (given as an
FBCB2 overlay) and automatically creates a debriefing
describing what parts of his plan are right, what parts
are wrong, and gives an expert’s rationale for the best
options. For poor decisions, the ITS lowers its
estimate of the mastery of principles related to those
decisions, and provides remedial materials on those
principles, before presenting anymore TDGs. The
student’s overlay is evaluated by comparing it to
overlays input by an instructor for that particular TDG.
These typically represent a few possible right answers
and a few common mistakes. The instructor will also
have annotated the overlays with information for use by
the ITS in assembling the debrief and determining
which principles the student is weak in. A sample of
the course hierarchy in IITSAT is shown in (Figure 5).

Figure 5. IITSAT's Student Interface.

For the TDGs and the 3-D dynamic scenarios, the ITS
initially selects exercises based on the need to test
untested principles, following each by a debriefing and
detailed information on the principles missed. The ITS
then begins to also retrieve scenarios that exercise the
principles in which the student’s mastery is weakest.
Furthermore, for any scenario using principles that the
ITS believes the student is weak in, it provides him
hints for the scenario, if they are available. These are
generally questions designed to get him to think about
the most important tactical principles required in the
scenario.

After the student has demonstrated (or learned) his
mastery of general tactical principles in the TDGs, he
proceeds to that portion of the course that requires him
to show that he can apply these same principles in a 3-
D virtual reality dynamic tactical simulation (For this
phase we used Mak Technology's Spearhead II, shown
in Figure 6). Additionally, more operations-oriented
principles (such as knowing when and how to use a
company wedge formation) are also tested. In the
current prototype, the student is given a short situation
description and then proceeds to execute the mission in
Spearhead II. After the scenario ends, the event log is
analyzed by the ITS to automatically determine which
actions were correct, incorrect, or omitted, and the
underlying principles that were understood and applied
or not.

Figure 6. Mak Technology's Spearhead II.

In some scenarios, we have subordinates that do not
follow orders, plans, and proper tactics. Normally the
commander would correct these problems with voice
commands. In this prototype we do no speech
understanding. But these corrections should be
manifested by the motions and actions of the
commander’s company’s tanks, of which he has direct
control. The ITS assesses these motions and actions
(captured from Variable Message Format (VMF)
messages). For example the commander’s OPORD
may have had the lead platoon in a wedge formation but
it is proceeding in a column. If he orders them into the
correct formation, an evaluation machine detects the

correction and he gets credit for recognizing the wrong
formation, and recognizing the need to correct it. If
they continue to move as a column, he fails these
principles.

Some scenarios in particular test his use of FBCB2 to
maintain situational awareness. For example, in one
scenario the enemy is approaching from an unexpected
direction, which is trivial if the commander is watching
the FBCB2 map display. Another test we use is to have
friendlies show up suddenly at an expected enemy
location.

In the scenario, unplanned actions occur, such as
unexpected contact with the enemy. His tanks begin to
react and he also issues particular orders, verbally in the
real world, with mouse clicks in the simulation. Again
the correctness of his decisions is evaluated from the
movements and actions of his company’s tanks. For
example, one scenario involves the lead platoon
spotting a road block at a choke point. That platoon
should deploy in a support by fire position and the
commander should order his infantry to protect each
flank. He should then order dismounted assaults up
each flank and around the road block to secure the far
side. He should Call For Fire at appropriate locations
and times during the scenario as well. Evaluation finite
state machines check each of these actions and debrief
the student at the end of the scenario as well as infer the
state of his tactical knowledge. A test for the combat
principle of audacity is to have the commander
unexpectedly come across a much larger force in a
totally unprepared situation, such as refueling, without
security.

After the scenario, the commander is debriefed with an
After Action Review. All the things he did right and
wrong are reviewed and he is told about the relevant
principles. For the failed principles he is given detailed
information and one example for each. The mastery
level estimates for all principles involved are updated.
Based on these, a new scenario is retrieved. Scenarios
are selected that test untested principles and test
recently failed principles. The prototype has different
instructional methods for students with little mastery or
experience compared to students with a lot of mastery
and experience.

Process/Benefits of using IITSAT
To develop an ITS in IITSAT, first requires
determining the content and target students. Any
important information that the ITS should ask each
student about his background is first defined. IITSAT
organizes content in a book metaphor with a course
consisting of chapters and these in turn consisting of
sections, which is the main instructional unit. Sections
are assumed to teach a set of principles. Each section
has detailed and summary multimedia files associated
with it, along with scenarios to use as examples. A
section's principles have detailed and summary
descriptions to be used during remediation (when the
ITS determines that a student failed to apply a principle
in a scenario). The ITS author must organize the
content into principles, sections, and chapters.

The default for IITSAT ITSs is for new students to be
in only 1 chapter at a time. (The ITS must estimate
their mastery to be at least to a specified degree before
it progresses them to the next chapter). For the FBCB2
ITS this corresponded to our needs exactly. The first
chapter consisted of sections for creating and editing
FBCB2 overlays and finding and placing common
symbols. This was a needed prerequisite for the second
chapter, since the student's answers to scenarios in that
chapter would be input as FBCB2 overlays. This
second chapter consisted of general tactical principles,
which would be illustrated by their answers to (static)
tactical decision games. The TDG scenarios all only
referenced principles in Chapter 2 and since only TDG
scenarios followed this convention, only TDG scenarios
would be retrieved to practice and test mastery of
chapter 2 principles.

Chapter 3 was intended to consist of the 3-D dynamic
simulation scenarios and more operational principles
(such as when and how to perform a bounding
overwatch). Thus chapter 3's section covered
operational principles. Its scenarios referenced both
chapter 3 principles and chapter 2 (general tactical)
principles. In this way, poor decisions that related to
chapter 2 principles could be correctly assessed, and if
the ITS assessed mastery of these principles was low
enough, the student would be sent back to that part of
chapter 2.

The ITS tracked each student's mastery of each
principle into author-defined categories. It was decided
that a "Beginner" category was needed for those with
no experience or knowledge whatsoever. This category
would always be presented with detailed material and
examples before having to perform in any scenarios.
This category would also be forced to successfully
perform enough Chapter 1 FBCB2 overlay scenarios to
prove mastery before continuing on. For some
chapters, it was determined that a very high level of
expertise should be required to "pass" them. Chapter 3
principles, for example, would not be tested again and
so it needed a high standard to pass. This became the
"Expert" level. Other chapters, such as Chapter 2, had
principles which would continue to be practiced in later
chapters, so a lower mastery level is allowed for
passing. This became the "Intermediate" level. Finally,
a category was needed that was between "Beginner"
(knows nothing) and "Intermediate" (allowable for
passing some chapters) and this became "Novice".

For the three chapters, scenarios were defined and
annotated. The annotations consisted of the
demonstrated principles, and the evaluation method.
For chapter 1 and 2 scenarios, the evaluation method
was comparison to stored correct and incorrect tactical
plans in the form of FBCB2 overlays. Associated with
each symbol was a list of the principles required to be
applied to understand that that symbol should be at that
location. Also the rationale for that symbol's selection
and placement were stored in a text file. Code was
written to convert both the student's and the stored
plans from FBCB2's VMF format to a plain text format
that was easier to work with. We then wrote code that

could compare two symbols from two separate plans
and assess their similarities. This was then embedded
in the similarity assessment code that comes with
IITSAT. This uses the symbol assessment to first
determine the closest stored plan. It then uses that
closest plan to create a debriefing for the student. For
chapter 3, we used IITSAT's FSMs. We defined FSMs
that analyzed the log file from the 3-D dynamic
simulation and determined which actions were correct
(and which associated principles were thus passed) and
which actions were incorrect (and which associated
principles were thus failed). The prototype was then up
and running and could be tested and refined while
playing the roles of different kinds of students.

The primary benefit of IITSAT was greatly reduced
development effort and time. Most of the ITS
functionality we needed already existed in IITSAT and
was readily accessible. IITSAT provided good
instructional and course progression functionality. The
scenario-based instructional paradigm was very natural
for this domain. By utilizing the IITSAT feature of
different instructional methods for different types of
students (assessed primarily by background questions
and mastery of principles), we were able to show a high
degree of intelligence in our ITS. The two primary
paradigms, which were matched both to different
students and different chapters were the scenario-
debrief and introduction-examples-scenario-debrief
loops. The fact that IITSAT communicated with
simulations (and other scenario players) through log
files made the interfacing work as straight-forward as it
could be. Similarly it required no effort for IITSAT to
communicate the need for hints to the scenario player
for beginners and novices. The hints generally took the
form of a question (such as what is the enemy probably
thinking?) or the advice to consider a particular
principle or aspect of the scenario. The FSMs
performed well in evaluating the student's actions in the
dynamic simulation.

Difficulties
There were several major challenges associated with
this ITS. Some were outside of IITSAT's intended
scope. Getting FBCB2 running on a desktop system
instead of in an actual vehicle was very difficult and
time-consuming. Getting the existing interface running
between FBCB2 and the commercial game was very
difficult and time-consuming, since we had no budget
for and therefore little cooperation from the developers
of those systems. We had originally planned to
interface with both the game (to get a log of events in
the 3-D simulation) and FBCB2 (to get the overlays and
message traffic) but we eventually had to settle with
just getting the FBCB2 overlays and using the FBCB2
log of events. We had assumed that reading the overlay
files would be straight-forward, but we had to acquire
special decompression software to decode the Variable
Message Format (VMF) in which the overlays were
stored.

Although it assumes a scenario-based paradigm,
IITSAT provides no simulation on which to play
scenarios. Similarly it provides no scenario editor. For

Chapter 3 scenarios, we used a slightly altered version
of a commercial game. While this was acceptable for a
proof-of-concept prototype, the game would be
unacceptable for actual training use for company
commanders, our target student. Additionally for the
decision evaluation, we were forced to write domain
specific code to serve as primitives in the FSMs and as
primitives in the plan comparison.

Because IITSAT communicates to simulations via files,
it pauses while the simulation is running (waiting for
the log file). This means, that although IITSAT may
determine that a hint is appropriate, it can only signal
that fact to the simulation when the simulation is
invoked and cannot execute a hinting mechanism itself.
Thus we had to write a hinting mechanism into each
scenario player. This turned out to be straight-forward,
however, since we decided to display the hints at the
beginning of the scenario. But, it would have been
impossible to dynamically hint during the simulation
run. This limitation will be corrected in the next
version which will also include an HLA interface.

There were four other problems with IITSAT which
have since been corrected. During the FBCB2 ITS
development, IITSAT only allowed one executable to
be defined for all scenarios. But we had two different
applications (FBCB2 overlay editor for Chapter 1 and 2
scenarios and Spearhead II for Chapter 3 scenarios).
For the prototype, we wrote a small executable which
was defined to IITSAT to be the one and only scenario
player. This application, when called with a named
scenario, simply determined the correct scenario-player
for the scenario from a text file entered by the author,
and called it. Another quirk of that version of IITSAT
was that it let the author define the initial set of
background questions when the ITS was first created,
but not change it. The author had to make sure every
question was determined at the time the ITS was first
created. Needless to say, this did mean recreating the
ITS a number of times. Fortunately, this process is not
time-consuming since it only involves entering the
names of scenarios, principles and multimedia
descriptive files, not recreating them. Another
limitation of the background questions is that they
could only be used to assess an average mastery for all
principles, not a specific mastery for a specific
principle. Finally, the version of IITSAT that we were
using, instead of allowing the student to enter the
authored ITS with a single mouse click, required the
student to start up IITSAT, load the correct course, load
the student model that corresponded to himself, and,
when running the first scenario, select the scenario-
player executable (which IITSAT would remember
thereafter).

Because IITSAT is based on a scenario-based
instruction paradigm and because much of its
adaptability is manifested in an intelligent selection of
the best scenario for a specific student, it works best if a
lot of scenarios are defined. This can be very
inconvenient during the development of a prototype
ITS or the initial stages of an operational ITS. During
the course of developing the FBCB2 ITS, we made

minor adjustments to IITSAT's scenario retrieval
algorithm to improve its use of a limited number of
scenarios. But it was still the case that adding many
more scenarios would improve its adaptability.
Another IITSAT change made during this ITS
development greatly increased the efficiency of its
XML format storage of courses and student models.

The use of FSMs for student action evaluation required
that each FSM machine had to be tied to the specific
terrain in each scenario. Any transition in the FSM that
referred to a location had to specify that location as
Lat/Long coordinates. For example, in the scenario
where the company was proceeding along a road and
encounters a road block, the transition that checks that a
mechanized infantry platoons is deployed to the left
flank actually checks that the location of one of them is
at a particular lat/long location, within a tolerance
distance. This limited the types of scenarios that could
be practically handled. Our next version will
dynamically calculate and use terrain features, such as
ridges, hills, valleys, and intervisibility lines.

The use of IITSAT was straight-forward when the
defaults were acceptable. But there was a steep
learning curve associated with taking advantage of the
more advanced features when the default behavior was
not desired. It took some time to understand what
IITSAT was doing and why after the defaults were
changed (though it always turned out to be behaving
correctly). For example IITSAT's defaults specify that
students should finish one chapter before being able to
select another. While this makes sense for less capable
students, it will tend to frustrate more knowledgeable
ones. IITSAT does allow different instructional
methods for different types of situations, but when
certain students are allowed to select multiple chapters,
there are other more-subtle consequences. In general,
working out these types of control issues can cause
unexpected (but correct) behavior. The control issues
relate to how much freedom of choice the student has as
to the next instructional event compared to the control
exercised by the ITS to dynamically force specific
instructional events in a certain order, compared to the
author statically defining what that order should be.

One last difficulty related to the fact that we were
developing a prototype ITS primarily for
demonstration. IITSAT was designed primarily to
develop actual operational ITSs. Making the same
choices in defining a demonstration prototype that
would have been made in developing the operational
ITS results in a prototype that requires a very long
demonstration. For example, typical scenarios in the
prototype require from 10 to 20 minutes. Five or six
are required to get though Chapter 1; from 4 to 6 to get
through Chapter 2, and several to at least illustrate
Chapter 3. More scenarios are required if performance
in the scenarios is poor. And to illustrate the
adaptability of an ITS for different students, generally
requiring viewing its decisions on at least two different
students. This requires about 8 hours of demonstration!
A useful capability would be to define a parallel,
demonstration version of many of IITSAT's parameters.

F/A-18 Air Tactics ITS
IITSAT was used to develop a prototype air tactical
intelligent tutoring system that provides pilots with
instructional feedback automatically, allowing the pilot
to identify and concentrate on perishable skills. The
prototype was based on a cognitive task analysis for
F/A-18 missions, completed with the assistance of a
subject matter expert. A complete system consists of a
simulator, evaluator, training system, and mission
planner. The prototype comprises the evaluator and
training system interfaced to a commercial flight
simulator. The use of IITSAT made the development
of the ITS prototype, within a very limited budget,
possible. The graphical Principle Hierarchy editor
allowed the domain knowledge to be defined with very
little effort and was able to model the F/A-18 Air
Tactics knowledge adequately. IITSAT's student model
definitions were adequate for modeling pilots and
required very little time. Changes could be made
easily. IITSAT's instructional methods structure did
allow the intelligence to generate the needed sequence
of instructional events to be defined with little effort.
IITSAT provided the visual tools to aid the authoring of
“evaluation machines” that assess pilot performance.
Several machines work in concert by taking a simulator
log of events as input and producing a debriefing report
for the pilot and tutoring system.

Reached first waypoint
Radar mode toggled

Reached target area

Reached target area

Reached target area

Start
Radar mode

activated

Success

Failed

Past first
waypoint

Figure 7. An F/A Air Tactics Finite State Machine.

IITSAT's evaluation machine technology was adequate
for most purposes. It included visual tools for creating
a set of mission-related principles with an associated
twenty-five evaluation machines. Visual tools greatly
improved the efficiency of authoring evaluation
machines. (Figure 7) illustrates such a machine. See
that the only way for the machine to reach the
“Success” state is for the pilot to reach the first
waypoint, toggle radar modes, and then reach the target
area. Should the pilot forget to toggle radar modes,
miss the first waypoint, or toggle radar modes before
the first waypoint, the “Failed” state will be reached.
As a result, the pilot can expect a debriefing associated
with this type of evaluation. Our evaluation machine
technology proved to be invaluable in producing a
useful debriefing for the pilot. The subject matter
expert guided the creation of feedback output so as not
to offend the pilot. Part of the technology included
visual tools for viewing debriefings.

To analyze pilot performance on a mission, we first
needed a content vocabulary to serve as a touchstone
for basing debriefings as well as deciding the next
training exercise. The vocabulary is embodied in what
we refer to as the "principle hierarchy." Each principle
can be a perishable skill or competency upon which we
can evaluate the pilot.

Overall, the IITSAT evaluation software module
proved invaluable for authoring the logic to assess
performance. A time-consuming element of the
evaluation machines is in the definition of the interface
between the simulator and evaluation machines, as each
machine must “understand” the syntax of the mission
log.

Originally the development team had assumed that
many of the evaluation machines would be reusable
across scenarios. However, it became easier to define
many evaluations machines that were specific to
specific scenarios. In considering other types of more
complex evaluations, a ceiling was reached because the
evaluation machines are based on finite state
technology. Evaluations involving pattern recognition
are much harder than the simpler conditional logic
implicit in the structure of the machines, although more
complex pattern-matching primitives could have been
defined, programmed and incorporated into the finite
state machines. Certain evaluations could not be
achieved because of limitations on our evaluation
machine architecture. For example, a pilot may decide
to skip waypoint 2, yet still achieve objectives by flying
directly to waypoint IP. The evaluation machine for the
principle, "Arrived at waypoint selected," will signal an
unmet objective. Further, the time of arrival at
waypoint IP will be earlier than expected—again an
unmet objective. These specific cases could be handled
by adding more links, to create paths that correspond to
all correct sequences, but these could become very
numerous. The full-scale, operational ITS
implementation would most likely require a more
powerful machine, capable of expressing more complex
types of evaluation so as not to overburden the author.

Other types of evaluations are imaginable, but would
push the limitations of the technology. For example, in
air-to-air combat, two fighters may be scissoring,
causing a pilot to stall the plane. An evaluation
machine could notice the stall event happening, but not
recognize the preceding scissoring motions. Either a
more powerful evaluation machine is necessary, or
another module is needed which can interpret the
mission log and inject a high-level “scissoring motion”
event prior to evaluation.

Early on, we encountered problems attaining source
code or documents regarding any one F/A-18 flight
simulator. Companies were unwilling to furnish source
code, or had inadequate methods for transmitting or
storing mission data. The simulator we eventually
adopted is “ACM: air combat simulation for Unix and
Windows,” which is a low fidelity F-16 simulator.
Information on the simulator can be found at
http://www.websimulations.com. The simulator comes

http://www.websimulations.com/

with source code written in C for the Windows NT
platform. Having source code freed us to modify the
simulation. Even though the simulator was for an F-16,
it was possible to convert the simulator to support F/A-
18 look-and-feel. We modified the simulator in four
ways. First, the HUD was rearranged to look more like
an F/A-18 HUD. Second, route information was added.
The simulator shows the pilot a bearing to the next
waypoint, shows the name of the waypoint, and notifies
the pilot when he reaches a waypoint . Third, we added
air-to-ground mode for ground attack, as well as master
arm mode. Fourth, the simulator produces a mission
log file so that the ITS-AIR system could determine
what had happened in the simulation, and therefore
evaluate pilot performance.

In summary, IITSAT's benefits for this application were
greatly reduced development time since it provided a
large majority of the needed functionality, the simulator
log file interface was to easy to work with, and the
finite state machines (FSMs) handled most assessments
well and provided good, easily tailorable debriefings to
pilots. The major difficulties were finding a simulation
that could be altered to produce a log file, and that there
were some evaluations that could not be performed
adequately by the FSMs. In a full-scale system, these
would require C++ programming. Lastly, many of the
FSMs needed to be written to be scenario specific.

TAO ITS Fleet Transition

The TAO ITS in use at SWOS, as described earlier, was
funded to transition to fleet use [Stottler and Harmon
2001] and it was determined that fleet student TAO
users were more diverse than SWOS students in terms
of their familiarity with the knowledge required.
Specifically TAO ITS originally followed a scenario-
debrief instructional cycle which is appropriate when
the students are familiar with the majority of the
knowledge needed to perform reasonably well in the
simulated scenarios. This is to be expected in a
schoolhouse environment when the material will be
fresh. But many TAO students in the fleet would not
have this level of knowledge either because they had
not taken the SWOS TAO course or it had been too
long since they had. TAO ITS needed to incorporate
different instructional methods for different types of
students in this more diverse group. We are now in the
process of transitioning the TAO ITS implementation to
IITSAT to take advantage of IITSAT's ease of defining
and using different instructional methods (IMs). In this
new version of TAO ITS, the student is asked a few
background questions to assess his level of expertise. If
his expertise is low the instructional method is highly
structured. He is presented the specific principles and
their descriptions in a prescribed order and shown
examples of previously recorded simulated scenarios
showing the TAO's correct actions which illustrate the
principles. The IITSAT version of the TAO ITS then
first gives this type of student relatively easy scenarios
to practice with. After he has shown that his mastery
has reached an intermediate level, then he transitions
into the scenario-debrief instructional method and more
difficult scenarios. This contrasts with students who

are initially (and continue to be) assessed at the
intermediate or expert level. These students have more
freedom to choose scenarios and are not presented with
instruction before scenarios, only debriefed and
remediated about their mistakes after the scenario is
complete.

The transition of the TAO ITS encountered few
problems and took relatively little time partly because it
was one of the example applications on which IITSAT's
design was based and it contributed its FSM code to
IITSAT. Most importantly, the TAO ITS simulator
already created a log file of significant events for
evaluation purposes in the correct format. Thus, it
could be largely used, except has described below, as-
is. The major difficulty with the IITSAT version of
TAO ITS was based on the fact that for novice TAO
students, a hinting mechanism was desired and IITSAT,
while allowing the ITS author to specify when hinting
would be appropriate, offers no capability to actually
provide hints. Thus the hinting mechanism had to be
built into the simulator. Additionally, IITSAT
communicates the need for hints and other routine
information though a specific file format that the
simulator had to be altered to read. IITSAT's Instructor
Interface had to be upgraded to reflect the capabilities
that already existed in the TAO ITS's Instructor
Interface Tool (IIT) which included managing students,
reviewing their progress, and replaying any of their
scenario performances.

GENERAL LESSONS LEARNED

After having applied IITSAT to several specific ITS
projects in different domains, there are a large number
of general lessons that we have learned relating to using
a general ITS authoring tool when creating ITSs.
IITSAT's scenario/simulation-based ITS paradigm is
good for tactical decision-making (and many other)
domains. An ITS authoring tool can save the majority
of the software development effort, if the desired ITS is
based on the same instructional paradigm on which the
authoring tool is based. This will be especially true if
there is some flexibility in the desired ITS functionality.
However keep in mind two important factors. There
will tend to be a high learning curve to use the
advanced features/flexibility of the authoring tool.
And, some domain specific software will probably need
to be written, unless the authoring tool was developed
specifically for your domain (i.e. a surface warfare
tactical decision-making ITS authoring tool or a
mechanized infantry tactical decision-making authoring
tool). The most domain specific software in a
simulation-based ITS tends to be the simulation and
scenario editor. Additionally, some domain specific
code will probably need to be written for
action/decision correctness evaluation.

Finite state machines (FSMs) are often a good basis for
evaluation in dynamic free-play simulated scenarios.
They do have some limits. Often they will need to have
domain specific primitives written for them, so it is
important that the authoring tool allow for this ability to
extend itself. Be prepared to write at least some

scenario-specific FSMs for each scenario. Furthermore,
FSMs will not be able to handle every type of
evaluation requiring, again, domain specific code.
Especially in more static scenarios (where either the
problem doesn't change (i.e. develop a tactical plan, but
don't execute it) or student actions do not greatly affect
the outcome), comparisons to correct and likely
incorrect sets of decisions/actions annotated with
appropriate rationale and principles are very helpful in
determining correctness. Again, the most detailed part
of the comparison will probably be based on primitives
using domain-specific code.

Using software not intended for training as the
simulator/scenario-player can be very difficult,
including just getting it and existing interfaces running.
For example, FBCB2 was developed to be a C4I system
running in actual vehicles, each equipped with a GPS
and connected to a radio network. It was very difficult
to get it running on a desktop, without a GPS or radio
network connection and to drive the vehicle positions
from simulated data. Furthermore it used a highly
specific compression scheme (to make the most of the
limited bandwidth of the radio network). Similarly
using a commercial game, even one that at been
interfaced to FBCB2 already, as a basis for a training
system had several shortcomings. Foremost was the
players access to unrealistic information and the lack of
realistic, intelligent behaviors in both friendly and
enemy vehicles and units.

Using a file interface between the simulation and ITS
had several advantages. Foremost, such interfaces are
easier to develop and debug, especially if the interface
is a human readable text file. It requires the least
modification to an existing simulation, since the
simulation only needs to have code to output events to a
file added to it. Of course DIS and HLA are potential
interface methods, if the simulation already supports
them. However, the kind of information the ITS needs
may be more detailed that that provided through the
HLA or DIS interfaces, which are really intended to
provide the data needed to coordinate distributed
simulations. This information tends to be just the
behavior of the modeled platform that is observable to
the external world, such as movement and the use of
weapons and sensors. However, the ITS might need to
know decisions and actions that the student is taking
that are purely internal to his platform. Examples are
noting which sectors a tank commander is scanning,
plan overlays created in FBCB2, reporting a TAO is
supposed to perform during tactical situations, and a
team leader correcting mistakes of his subordinates.

An ITS authoring tool may provide more flexibility
when the target users or needed capabilities change.
That is, these changes may take substantially less
development time if the tool provides those capabilities.
However an authoring tool may provide less flexibility
to implement a new capability if these new capabilities
are not present in the authoring tool or at least allowed
for. Therefore, ITS authoring tools need an interface to
a general purpose language, like C++, and ways to
incorporate calculated results back into the authored

ITS. Similarly, it is helpful if the authoring tool is
under continued development and if its functionality
and capabilities can be adjusted and improved for
specific uses. Because of the rapid development
capabilities, authoring tools are very real helpful for
rapid prototyping. Paradoxically, a scenario-based ITS,
developed from an operational perspective can be
difficult to demonstrate briefly. Different decisions in
setting the parameters in the authoring tool would be
made if creating a demonstration versus an operational
system. Consequently, a "Demo-Mode" would be good
addition to an authoring tool that would allow parallel
specification of a different set of parameters for use
only in demonstrations. These would include the use of
smaller, simpler, and fewer scenarios. A more flexible
and intelligent use of what scenarios exist when they
are few in number would also be helpful. In general, a
simulation-based ITS usually demands many scenarios.
You will always want more scenarios than you have.
Therefore, you should allocate more scenario
development time and more scenarios than you think
you will actually need.

FUTURE WORK

IITSAT development is continuing. The next version
will be completed late in the summer of 2001.
Currently an HLA interface is being developed for
IITSAT and the student interface is being revamped to
make it more intuitive. As more applications are being
developed with IITSAT extra features required for them
that are generally useful are added back into IITSAT.
SHAI has been awarded an additional ITS contract to
investigate ways to make ITSs even more adaptive to
individual student differences. IITSAT is being used as
a basis for this work. Additional adaptive features are
being added to it to allow their usefulness to be tested.
TAO ITS and the FBCB2/Tactical Decision-Making
ITS will be used for this testing.

REFERENCES

Klein, Gary and Zsambok, Caroline E., A. eds. (1997).
Naturalistic Decision Making. Mahwah, New Jersey:
Lawrence Erlbaum Associates, Publishers.

Lussier, James W., Ph.D. (2000). Coaching Techniques
For Adaptive Thinking, I/ITSEC 2000 Proceedings.

Stottler, Richard H., and Parekh, Sujay S. (November,
1996). AI Techniques for Reusable Tactics Expert
Systems. Stottler Henke and Associates, Inc., 107-
Tactics FR.

Stottler, R. H., and Vinkavich, M. (2000). Tactical
Action Officer Intelligent Tutoring System (TAO ITS).
I/ITSEC 2000 Proceedings.

Stottler, R. H., and Harmon, N. (2001). Transitioning
an ITS Developed for Schoolhouse Use to the Fleet:
TAO ITS, A Case Study. I/ITSEC 2001 Proceedings.

	Abstract
	INTRODUCTION
	IITSAT DESCRIPTION
	Cases for Correct Action Determination
	Creating an ITS with IITSAT

	ORIGINATING APPLICATIONS
	Tactical Action Officer (TAO) ITS
	Other ITSs

	APPLICATIONS CREATED WITH IITSAT
	FBCB2/Tactical Decision-Making ITS
	Process/Benefits of using IITSAT
	Difficulties
	F/A-18 Air Tactics ITS
	TAO ITS Fleet Transition

	GENERAL LESSONS LEARNED
	FUTURE WORK
	REFERENCES

