
 1

MH60S/R Helicopter Multi-Platform &
Web-Based Crew Trainer with FLIR

Jeremy Ludwig Robert A. Richards
 Stottler Henke Associates, Inc. (SHAI) Stottler Henke Associates, Inc. (SHAI)

San Mateo, CA 94404, U.S.A. San Mateo, CA 94404, U.S.A.
OMIA@StottlerHenke.com OMIA@StottlerHenke.com

Abstract—The US Navy's PMA-205, in conjunction with
the training and simulation industry, has developed and
deployed OMIA: a flexible, multi-platform, Web-based
crew trainer for the Navy’s new MH-60S and MH-60R
helicopters. 12OMIA is currently in use by HSC-2, HSC-3
and HSM-41 and is available to all crewmembers
throughout the Navy. To maximize access to the trainer and
to make deployment easier, OMIA is written in Java, and
deployed both as a portable application and as a web
application. A portable application does not require any
special user rights to install; a web application is run over
the internet from a browser. OMIA includes a simulation of
the MH-60S/R Common Cockpit, including a FLIR
capability that includes using an actual hardware FLIR
hand-control unit when attached through USB. OMIA has
been designed and implemented to be flexible to changing
Navy needs, a design aspect which proved itself again in
2009 when OMIA’s FLIR was converted for use in the fixed
wing EP-3E aircraft. OMIA illustrates solutions to three
critical issues in developing low-cost training software for
aircraft: quickly responding to the ever-changing demands,
re-use of interface components across multiple aircraft, and
providing training that can be accessed where and when it is
needed.

TABLE OF CONTENTS

1. INTRODUCTION ..1
2. OMIA PART-TASK TRAINER1
3. FLIR ENHANCEMENTS..5
4. EP-3E FLIR TRAINER ..6
5. CONCLUSION..7
REFERENCES..7
BIOGRAPHY ...7

1. INTRODUCTION

The US Navy has introduced two new helicopters, the
MH-60S and MH-60R. Both of these helicopters utilize
Lockheed-Martin’s Common Cockpit design. The Common
Cockpit includes all the flight and mission instrumentation
in both of the helicopters and enables both the pilot and
co-pilot to share workload through dual flight and mission
instrumentation.(Figure 1). As can be seen in Figure 1 the
pilot and copilot each have two LCD screens, one of which

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1067, Version 2, Updated 2009:11:17

is the Mission Display (MD) and the other is the Flight
Display (FD). The pilots interact with these displays
primarily through a set of bezel keys around each display
and a keypad located in the center console. This keypad
contains a set of fixed function keys (FFK), a set of context-
dependent programmable keys (PK), and a small joystick
known as the “hook”.

For more than eight years the US Navy's PMA-205, in
conjunction with Stottler Henke, has developed, deployed,
and updated a flexible, low-cost PC-hosted crew trainer for
the Navy’s new MH-60S (Sierra) and MH-60R (Romeo)
helicopters called the Operator Machine Interface Assistant
(OMIA).

Figure 1. MH-60 Common Cockpit

2. OMIA PART-TASK TRAINER

The core OMIA (Figure 2) is a standalone Java program that
operates under any standard Windows (XP, Vista, and 7) or
Linux computer that includes a Java Runtime Environment
(JRE); this includes Navy/Marine Corps Intranet (NMCI)
computers. The standalone OMIA provides an introduction
to the Common Cockpit, including the Mission Display
(Figure 3), the Flight Display (Figure 4), the Center
Console’s Fixed Function and Programmable Keys (Figure
5), and several helicopter control panels. A major benefit of
the standalone core OMIA product that the Navy requires is
that it requires no external licensing, and therefore it can be
distributed freely to anyone in the US Navy via compact
disc or the Web. However, the core system also supports a

 2

number of optional extensions to meet additional training
needs.

Figure 2. The Core OMIA System and Optional
Extensions

The core OMIA can be used to teach both the Sierra and
Romeo versions of the helicopter. A different executable is
created for each configuration. Presently there are two for
the MH-60S (armed and non-armed) and two for the MH-
60R (pilot and sensor operator). In addition, the user can
also run in standalone mode (the default) or in network
configuration. In a network configuration, one operator can
be the pilot and another operator can be the co-pilot or
sensor operator. In this scenario, both operators will see the
same world, including changes made by each other. To do
this, you have to state whether you are the server or the
client. The first person to start OMIA has to be the server so
that the second person can designate himself or herself as
the client; the program will search for a server for them to
join on the network. To start in network (client/server)
mode, the OMIA executable is started with the –multi
option.

Figure 3. OMIA Mission Display with Menu Visible

If optional hardware is attached, OMIA and Windows
discovers it and works correctly with it automatically. The
simplest example is multiple monitors: by attaching two
displays, the Mission Display, shown in Figure 3, and the
Flight Display, shown in Figure 4, can be displayed on
separate monitors, with one of the monitors also displaying
the Center Console. Another option is to have one or more
of the screens made a touch screen as is done in the Mission
Avionics System Trainer (MAST), described below, in
which the bezel keys on the flight display and mission
display are operated using finger pushes on a touch screen
to more accurately emulate the ergonomics of the actual
helicopter. Of course, the third screen containing the Center
Console panels could also be a touch screen so that the user
could push the buttons in a way more similar to how it is
done in the aircraft instead of using the mouse.

A software addition for OMIA is connecting it to a flight
simulator. Every time OMIA starts it checks to see if a
compatible flight simulator (e.g. Microsoft Flight Simulator,
Flight Gear) is already running. If it is running, OMIA
attaches itself to the flight simulator and then gets its
position, speed and other flight information from it.

Figure 4. OMIA Flight Display

In this configuration, the user could have the external view
be completely generated by the flight simulator, and the
Flight Display, Mission Display and all of the other panels
still being used from the core OMIA. However, any other
information such as ground speed, latitude/longitude
location, or motion is all being read in from the flight
simulator. This is very beneficial if you wish to fly or see
the terrain while navigating a search and rescue pattern. As
one navigates, the helicopter may be guided along the
search and rescue pattern on the Mission Display, and as
search and rescue points are reached or captured the pattern
will update appropriately. When using a flight simulator,
other hardware can be used if desired. One can plug in a
joystick, or a head mounted display with head tracking may
be added to improve the means for emulating the full field
of view.

 3

Flying can be performed solely using a joystick, or a
joystick and a separate control for the collective, or COTS
pedals could be added. Microsoft Flight Simulator also
provides an automatic pilot, as well as the Slew Mode, so
one can move the helicopter without having to concentrate
on the flying. Since the flying performance will not actually
be realistic for an MH-60S or MH-60R helicopter, it is
normally better to use the Slew Mode. This feature allows
for moving the helicopter in any desired direction without
having to fly a helicopter whose characteristics do not
match the exact characteristics of the actual helicopter.
More information on the details of interfacing with
Microsoft Flight Simulator is provided in [1].

Figure 5. Programmable/Fixed Function Keysets

Converting from C++ to Java

Until 2007 this software was written mostly in C++, which
had been the best language for the challenges. A description
of the C++ version is provided in [1] & [2]. However, due

to various circumstances OMIA was converted to Java in
2007. This work is described in more detail in [3].

OMIA has core functionality that may be enhanced via
optional software and hardware. The core of OMIA
provides a partial-task trainer (PTT) of the helicopter
software and hardware. The trainer includes the flight and
mission displays as well as the programmable & fixed
function keypads, the hook, and the RCU (Radio Control
Unit), CMP (Control Monitor Panel), and CCU (Cockpit
Control Unit) panels.

There were five main driving factors that led to the decision
to convert to Java. First, the flexible design for evolving
requirements is necessary because the Common Cockpit
continues to evolve. Even though the MH-60S and MH-60R
both use the Common Cockpit, the helicopters have
different capabilities and missions, thus many operations are
different on the two platforms. However, a programmable
keyset (PK) supports the differences. In addition, the
software for the two platforms is not always at the same
version. The Navy supports these differences in OMIA.
Since this process will be continuing for years it is always
best to have the software in the most flexible language for
this task. Advances in the Java language and tools have
now made Java a better choice for rapid modification.

OMIA has been able to, and must continue to work with and
control Microsoft™ Flight Simulator when it is available, to
use COTS and/or custom hardware when attached, and to
still function as a complete standalone application. In
addition, the C++ version of OMIA software was the
software component of the MH-60S Mission Avionics
Systems Trainer (MAST); this has been replaced by the Java
version

Second, the option to go to Java was facilitated when The
DiSTI Corporation (www.simulation.com) released a Java
version of their tools that is used in part of OMIA. Without
this option, the rest of OMIA could have been converted to
Java and some of its benefits could have been realized, but it
would still not be able to run on Navy/Marine Corps
Intranet (NMCI) machines.

Third, one of OMIA’s goals has always been its availability
on as many computers as possible both on land and at sea.
Thus even though it can be enhanced by optional hardware
and MS Flight Simulator, a very functional standalone
version has always been available. The default computer
configuration in the Navy is referred to as NMCI
(Navy/Marine Corps Intranet). These have restricted access
and certain aspects of the C++ version of OMIA could not
be used easily on NMCI machines, including DiSTI’s
libraries. But once Java versions became available, NMCI
compatibility could be provided as the required Java
Runtime Environment is already installed on the NMCI
machines.

 4

Fourth, besides keeping up with the helicopters’ changes,
OMIA is constantly being enhanced. One of the recent
enhancements is the client-server design change, so that
multiple users of OMIA can interoperate. That is, OMIA
can be run by multiple users, so that a set of users can match
different seats in one helicopter, and multiple helicopters
can also be handled so everyone is playing in the same
world. The change was simplified because Stottler Henke
already had a general client-server capability built into one
of its Java based tools. This was leveraged in the OMIA
Java version.

The fifth advantage of the new OMIA is that it is easily
ported to other platforms (e.g., Linux). The Navy requested
a Linux version of OMIA in 2009 as part of an acoustic
systems trainer enhancement. The fact that OMIA was
written in Java allowed us to take advantage of this
unexpected opportunity.

Mission Avionics System Trainer (MAST)

The MAST, as shown in Figure 6, includes actual hardware
in the Center Console that is exact aircraft hardware or a
very close facsimile of it. The MAST hardware was
procured by the Navy from JF Taylor, Inc. One can actually
push physical buttons, change actual knob positions, feel
feedback, open covers, etc.

There are two seats, the pilot and co-pilot. Each seat has two
screens just as in the helicopter, one for the Flight Display
and one for the Mission Display. There are individual
screens for the pilot and co-pilot showing the outside view,
generated by Microsoft Flight Simulator. There is a simple
cyclic in the MAST and the screens for the Flight Display
and Mission Display are actual touch screens. Another
feature of the Center Console hardware is the actual hook
hardware, used to control the cursor in the Mission Display.

 Figure 6. Mission Avionics System Trainer (MAST)

The MAST is a medium resolution trainer driven
completely by OMIA software and MS FS software. Again,
there is only one version of OMIA, and it can work with or

without MAST hardware. The MAST can be used for many
different types of operations, including coordinated
operations, because, as described above, the two seats can
be used independently, or in conjunction (client/server
mode) so that the pilot and co-pilot are flying the same
mission. The MAST has been in use for a couple of years at
HSC-3 at NAS North Island and another MAST is available
at HSC-2 at NAS Norfolk. They are mainly used for Sierra
training; however, since they are being completely driven by
OMIA software, they can be quickly reconfigured as Romeo
stations via restarting the programs in Romeo mode.

OMIA as a Portable and Web Application

A portable application, or ‘portableapp’ is a software
program that does not require any kind of formal installation
onto a computer's permanent storage device to be executed,
and can be stored on a removable storage device such as a
CD-ROM, USB flash drive, flash card, etc.; this enables it
to be used on multiple computers. The portableapp reads its
configuration files from the same storage location as the
software program files.
Most software for Microsoft Windows is not portable,
because it use the Windows registry, etc. That is, if one
installs an application that is ‘installed’ in a folder and
copies the folder to another computer, usually the software
will not run on the second computer (where by contrast, a
portableapp would).

By making OMIA a portable application, the Navy receives
many benefits. (First, a caveat: since OMIA is written in
Java, in some regards it is NOT completely portable because
there needs to be a Java Runtime Environment (JRE) on the
computer that OMIA runs on. The JRE is freely available
and many machines already include it, including all NMCI
machines. However, the default JRE is not portable.
Nevertheless, work is being done to make a portableapp
JRE. For the rest of this discussion, OMIA Java will be
referred to as a portableapp.)

A major advantage that has already proven itself very
valuable is the ease of distribution and ‘installation’. Since a
portableapp does not require formal installation it can be
used directly from the distribution media as long as the
media is writable. That is, a USB drive can be plugged in
and the OMIA software run directly from it . This is not
the case for a CD disk, since the disk is read only.
However, in both cases the OMIA directory can be simply
copied to anywhere on the computer and then run from that
location. . This has made distribution to training classrooms
trivial compared to the previous C++ OMIA, which
required an installer, especially when automatically pushing
installs to networked computers.

 NMCI compatibility, as already mentioned, is a huge
advantage provided by OMIA’s being a portableapp.
Previously, users would have to go to a lab when they
wanted to utilize OMIA even though most have an NMCI

 5

computer at their desks. There is a huge convenience factor
in making OMIA available at a user’s desk.

Another advantage of OMIA being written in Java is that it
could be run as a Java web-start application. That is, not
only is OMIA a portableapp, it was a small task to make it a
WEB-based application.

3. FLIR ENHANCEMENTS

OMIA continues its earlier history, where each version not
only progressively matched the evolving helicopter
software, but functionality was expanded; the current OMIA
has added a FLIR (Forward Looking Infrared) capability.

The FLIR user mainly controls the FLIR operations via a
Hand-Control Unit (HCU), as shown in Figure 7. The Navy
has developed a portable HCU that uses the actual
helicopter’s HCU, but connects to a USB controller with a
USB connector. This portable training HCU has been
interfaced to OMIA.

Figure 7. FLIR Hand Control Unit (HCU)

OMIA reacts the same way to the HCU hardware as it does
to the presence/absence of other hardware units; when
OMIA starts up it detects if the FLIR HCU hardware is
attached. If it is attached, the software will read input from
it, if it is not detected, then a software equivalent is provided
(Figure 8).

However, neither of these HCU solutions meets all of the
training requirements. The actual hardware is too expensive
per HCU unit, while the simulated hardware does not
provide the tactile feedback and muscle memory of a
physical hand control unit. To address these issues, we have
integrated OMIA with a second, low-cost, HCU based on
technology originally developed for simulators rather than
using an HCU from the helicopter (Figure 9). Due to the
modular design of the OMIA software, adding support for

an additional USB HCU input device required relatively
little development effort.

Figure 8. Simulated HCU in OMIA.

Figure 9. Low-cost HCU built by Metters Industries.

An example of a FLIR, with the MH-60 overlay, as shown
on a Mission Display in OMIA is shown in Figure 10. The
generation of FLIR images is a difficult task in real-time.
Usually FLIR simulators are very expensive units
incorporated into multi-million dollar simulators. For

 6

OMIA a simpler solution is created to provide a high level
of learning benefit without the cost.

The FLIR implementation in OMIA uses a 2D FLIR image.
Much of the learning related to FLIR concerns the operation
of the FLIR menus and other operations that are part of the
overlay. Through the combination of the hardware FLIR
HCU and the overlay menus and other functions, a great
deal of learning is facilitated. For example, users can zoom
in and out, slew, adjust image polarity, cycle through
camera modes, and navigate through on-screen menus.

Figure 10. Screenshot of 2D FLIR in OMIA

4. EP-3E FLIR TRAINER

Recently, we developed a prototype version of a FLIR
trainer for the EP-3E fixed wing aircraft based on the OMIA
architecture, as shown in Figure 11. Two different types of
engineering changes were required to support this, which
can roughly be divided between framework and flir.

Figure 11. A prototype FLIR trainer for the EP-3E
based on the OMIA architecture.

The framework changes were aimed at supporting a FLIR-
only view, removing all of the MH-60 specific elements
with as little programming as possible. The alteration occurs
via a configuration property such as a command line
argument. The changes include removing the flight display
and keypads, changing frame titles and borders, and
removing unneeded panels from the mission display. Once
this UI adaptation was complete, the main functional change
was to automatically enable the FLIR upon startup. This
was done by simulating programmable, bezel, and fixed key
presses on the hidden UI interaction components. The final
modification was to replace the image in the splash screen
to show an EP-3E rather than an MH-60. Overall, the
framework changes took only a few hours of programming.

The flir changes were more substantial. While the two
systems share much in common with respect to the actual
functionality, both the HCU interaction and information
displays are quite different. As a functionality example, the
EP-3E does not have as many sensor modes as the MH-60,
so the extra modes had to be hidden. As an example of an
interaction change, pressing down on the right control on
the HCU while in the main FLIR display brings up a
weapons menu in the MH-60R; there is no corresponding
function in the EP-3E. Pressing the right control down while
looking at the main menu has the same effect in both
systems. As an example of information display changes, the
two systems have opposite vertical angle indicators, with the
MH-60R displaying from -60 to 120, while the EP-3E runs
from -120 to 60 for the same physical vertical slewing.
More substantially, while the main FLIR displays mainly
contain the same information, the locations for much of the
information are different across the systems, as are the exact
formatting requirements of this information.

These flir changes utilized the modular architecture used in
OMIA. We were able to easily encapsulate the information
display changes as we were already making use of a model-
view-controller architecture [4]. In this case, the flir model
contained all of the information about the current state of
the simulated FLIR system, and the view controls, how to
display this information. Switching to FLIR for EP-3E
involves substituting the MH-60 view with an EP-3E view –
the underlying model remains the same. The changes in
FLIR functionality were very limited across the systems, so
special cases were included in the FLIR model to
accommodate this. Likewise, changes in the interactions
supported by the FLIR controller were also limited, so
special cases were added here as well.

There are two significant benefits gained from using the
FLIR portion of OMIA for training on both the MH-60 and
EP-E3E platforms. First, since the controller remains
largely unchanged between the two systems, support is
provided to both for input from either the software HCU or
either of the hardware HCU units in both FLIR systems.
Second, since the model is primarily the same for both
systems any additional functionality added for one system

 7

will be available to the other. This leverages development
resources across the two FLIR trainers.

5. CONCLUSION

The complexity and number of the sensors under control of
the crew on the MH-60S and MH-60R helicopters pose a
difficult training task for the Navy. To meet this challenge
the US Navy's PMA-205 in conjunction with Stottler Henke
and various hardware vendors has developed and deployed
OMIA, a flexible, low-cost PC-hosted desktop crew trainer.
OMIA has evolved with the changing helicopter software;
in addition, with each iteration, it has become an ever more
functional trainer.

The latest version of OMIA demonstrates the utility of
designing a flexible system that allows for quickly
responding to ever changing demands. As presented in this
paper, OMIA was able to adapt to three new challenges with
a minimum of additional development costs. The first
challenge was an unexpected request to run on Linux; the
second challenge was the addition of a new physical hand
control unit for FLIR; and the third challenge was to
leverage the work done for the existing FLIR trainer for the
MH-60 to create a new FLIR trainer for the EP-3E aircraft.

OMIA is available for anytime training on both land and at
sea. To learn more regarding the past, present and future of
OMIA, please visit the project web page at
www.StottlerHenke.com/OMIA.

REFERENCES

[1] Richards, R., J. Ludwig (2007) "PC Rapid Modification
Tool for Aircraft Experimentation & Training for the
MH-60S/MH-60R Helicopters", 2007 IEEE Aerospace
Conference Proceedings. Big Sky, Montana.

 [2] Ludwig, J. (2006). “Comparing helicopter interfaces
with CogTool”, 7th International Conference on Cognitive
Modeling, Trieste, Italy.

[3] Richards, R., J. Ludwig (2008) "Training Benefits of a

Java Based Part Task Trainer", 2008 IEEE Aerospace
Conference Proceedings. Big Sky, Montana.

[4] Gamma, E., Helm, R., Johnson, R., & Vlissides, J.

(1995). “Design Patterns: Elements of Reusable Object-
Oriented Software.” Addison-Wesley.

BIOGRAPHY

Jeremy Ludwig, Ph.D. is a project
manager / research scientist at Stottler
Henke, where his research areas
include intelligent training systems,
machine learning, and behavior
modeling. He is leading the software
development effort for the OMIA
common cockpit helicopter training
system for the MH-60S and MH-60R.
Dr. Ludwig has also been involved in

a number of other research projects that utilize game and
simulation technology for training. These projects include a
mobile, game-based training system developed for the
iPhone to support the training needs of F-16 and F-22 pilots,
a game-based second language retention system also
delivered on the iPhone, an on-line simulation-based
training system with learning adversaries in a multi-player
virtual world for desktop training, and SimVentive™, an
integrated development environment for the rapid
construction of training games and simulations. Jeremy was
a co-chair for the 2008 AAAI Fall Symposium on Adaptive
Agents in Cultural Contexts and has been involved in a
number of tutorials on the use of artificial intelligence
techniques in serious games at IITSEC over the past four
years. He joined Stottler Henke in the fall of 2000 and holds
a PhD in computer science from the University of Oregon.

Robert Richards, Ph.D. is the Principal
Scientist and Manager of Stottler
Henke’s Navy helicoptertraining
contract, OMIA. OMIA is a PC-based
desktop training system that teaches
crewmembers the Navy’s new MH-60R
and MH-60S helicopters. Dr. Richards
has taken OMIA from a Research and
Development SBIR project to a
deployed training tool that has been

awarded a $4.1 million IDIQ contract. Dr. Richards received
his Ph.D. from Stanford University in mechanical
engineering with an emphasis on machine learning and
artificial intelligence. Dr. Richards is managing and has
managed multiple projects for both commercial and
government clients, including various intelligent-tutoring-
system-based training projects. He is the principle
investigator for VERTICAL, a Navy project to develop an
innovative analytic test tool that can be used to support
vertical takeoff and Visual Landing Aid analysis and testing.
He was also the PI for INCOT, an Air Force project that
developed automated tools for network layout. These
projects exemplify his wide range of research and
application area interests, including: training system
development; applying automation and artificial intelligence
techniques; and decision support tool development for life-
critical situations. Dr. Richards has publications in all these
areas.

–

