
Cluster Node

Agent

Agent

Agent

Agent
Cluster Node

Cluster Node

Resource
Manager
(e.g. LSF,

SGE)

Monitors (e.g.
ganglia,tcpdump)

Services
(e.g. NFS)

F
A
C
I
L
I
T
A
T
O
R

Reasoning
Agent

Distributed Troubleshooting Agents

Charles Earl, Emilio Remolina, Jim Ong John Brown
Pentum Group,Inc.

Stottler Henke Associates johnbrown@pentum.com
{earl,remolina,ong}@shai.com

Abstract

Key issues to address in autonomic job recovery for
cluster computing are recognizing job failure;
understanding the failure sufficiently to know if and
how to restart the job; and rapidly integrating this
information into the cluster architecture so that the
failure is better mitigated in the future. The Agent
Based High Availability (ABHA) system provides an
API and a collection of services for building
autonomic batch job recovery into cluster and grid
computing environments. An agent API allows users to
define agents for failure diagnosis and recovery. It is
currently being evaluated in the U.S. Department of
Energy's STAR project.

1. Introduction

In production high-performance cluster computing
environments, batch jobs can fail for many reasons:
transient and permanent hardware failures; software
configuration errors; insufficient computing, storage,
or network resources; incorrectly specified application
inputs or buggy application code. Simplistic job
recovery policies (e.g. blind restart) can lead to low
quality of service and inefficient use of cluster
resources. To provide high throughput and high
reliability, it is necessary to determine the cause of task
failure in enough detail to select and execute the
appropriate job recovery. While many job failures
require human intervention for proper troubleshooting
and repair, a significant number can be delegated to
autonomic software.

We are developing a platform called the Agent
Based High Availability (ABHA) that provides
autonomic recovery for batch jobs running on cluster
and grid computing environments. ABHA is in use at
the U.S. Department of Energy's STAR project [2] at
Lawrence Berkeley National Laboratory (LBNL).

2. Architecture

A complete model for autonomic job recovery has
to address four problems: 1) recognition of job failure;
2) determination of appropriate failure recovery, which

may require diagnosis to select between alternatives; 3)
the ability to initiate recovery actions; and 4) using that
knowledge to avoid or mitigate the failure in the
future.

 ABHA uses a collection of distributed agents to
address these problems. Agents provide robustness,
local monitoring and recovery with global
communication, and separation of concerns for
creating new error management details.

Figure 1 depicts the core components of the system in
a typical configuration. Agents collect information
about the system and jobs running on it and share that

information with other agents by producing events that
are distributed by a centralized Facilitator. Agents use
this shared information to predict and diagnose job
failures, make job recovery recommendations, and
autonomously perform job recovery. Agents can be
deployed on various nodes throughout the cluster as
dictated by the configuration of the site. For example,
agents can collect information from services deployed
through the system (e.g. NFS), gather information
from and issue commands to distributed resource
managers (e.g. SGE [3] or LSF [4]), filter and interpret
information collected from other system monitors (e.g.
Ganglia [5], or tcpdump), or perform complex
reasoning based on collected information.

Figure 1: ABHA Architecture

ABHA agents can be written in the rule-based
language of JESS [6], or C++, Java, and Perl. Agents
can be designed and deployed also using our
Simbionic[6] agent toolkit.

Figure 2. Defining Agent behaviors in Simbionic.
Agent behaviors are defined using a flowchart-like
graphical language but with the constructs of state-of-
the-art programming languages. In the figure, the agent
suspends some jobs accessing a disk vault (described
in Section 3), waits until the disk vault is acceptable,
and then resumes the jobs.

Simbionic provides developers an IDE to specify
agent behaviors by drawing Behavior Transition
Networks (BTN) (Figure 2). A BTN is a kind of finite
state machine. Unlike state machines, BTNs provide
constructs common to programming languages: they
(i) are hierarchical, (ii) have local variables, (iii) have
access to blackboards, (iv) are polymorphic, and (v)
can sent messages to other BTNs. Patterns useful to
the job management domain can easily be represented
as BTNs: for instance, monitors, triggers, timeouts, and
parallel execution of repair procedures. Finally, a BTN
can execute arbitrary Java/C++ code and can be fully
integrated with rule-based systems (i.e., JESS) giving
developers a full range of programming power while
maintaining a graphical behavior representation that
can be understood and modified by non-developers.

3. Example
The STAR production cluster at LBNL [7]

maintains a clustered file system for storage of
experimental data. Each node is referred to as a disk
vault. The batch job will be assigned to run on one of
344 compute nodes and will access data that is
remotely mounted on one of the 65 disk vaults. If too
many jobs try to read data at the same time, the disk
vault goes into a thrashing mode and only reboot can
bring it back. A reboot can be avoided by intervening
when disk vault I/O reaches a critical value, by
suspending jobs accessing the overloaded vault, adjust
their resource requirements, and shepherd each job
when the load on the vault reaches acceptable levels.
 We developed a set of ABHA agents for addressing

this case using the Simbionic. These agents interact as
follows:
• A ganglia agent filters information from the Ganglia
monitor, sending an event when the load of any disk
vault exceeds a threshold.

• The Reasoner agent (a Simbionic-JESS mixture)
then requests the tcpdump agent to determine which
nodes access the vault and what I/O bandwidth they
use.

• The Reasoner then requests the lsf agent to
determine the jobs running on the offending nodes.

• The Reasoner then determines users causing the
problem by correlating users, jobs, nodes where the
jobs run, and node I/O access to the disk vault.

• Emails to alert the users and the administrators are
then run, as defined by some administrator policy.

• Under the administrator command, the repair policy
in Figure 2 is executed.

The ABHA system addressing the diskvault
problem as described above has been in use on the
STAR production cluster at LBNL since January 2005,
providing support for analysis and troubleshooting of
diskvault failures.

4. Remaining Work

A Grid service implementation of ABHA is also
being developed for the STAR Grid project [7].

References
1. STAR experiment website http://www.star.bnl.gov/.
2. SGE website http://www.cs.wisc.edu/condor/.
3. Platform Computing LSF http://www.platform.com
4. Ganglia project website http://ganglia.sourceforge.net/.
5. Simbionic website at http://www.simbionic.com/
6. JESS website at http://herzberg.ca.sandia.gov/jess
7. Parallel Distributed Systems Facility website
http://www.nersc.gov/nusers/resources/PDSF/

