
Cluster Node

Agent

Agent

Agent

Agent
Cluster Node

Cluster Node

Resource
Manager
(e.g. LSF,
Condor)

Monitors (e.g.
ganglia,

tcpdump)

Services
(e.g. NFS)

F
A
C
I
L
I
T
A
T
O
R

R
E
A
S
O
N
E
R

ABHA: A Framework for Autonomic Job Recovery

Charles Earl,
Emilio Remolina, Jim Ong

John Brown
Pentum Group,Inc.

Chris Kuszmaul
chris_kuszmaul@

hotmail.com

Brad Stone
bstone@

aspirinsoftware.com
Stottler Henke Associates johnbrown@pentum.com
{earl,remolina,ong}@shai.com

Abstract

Key issues to address in autonomic job recovery

for cluster computing are recognizing job failure;
understanding the failure sufficiently to know if and
how to restart the job; and rapidly integrating this
information into the cluster architecture so that the
failure is better mitigated in the future. The Agent
Based High Availability (ABHA) system provides an
API and a collection of services for building
autonomic batch job recovery into cluster computing
environments. An agent API allows users to define
agents for failure diagnosis and recovery. It is
currently being evaluated in the U.S. Department of
Energy's STAR project.

1. Introduction

In production high-performance cluster computing
environments, batch jobs can fail for many reasons:
transient and permanent hardware failures; software
configuration errors; insufficient computing, storage,
or network resources; incorrectly specified application
inputs or buggy application code. Simplistic job
recovery policies (e.g. blind restart) can lead to low
quality of service and inefficient use of cluster
resources. To provide high throughput and high
reliability, it is necessary to determine the cause of
task failure in enough detail to select and execute the
appropriate job recovery.

While many job failures require human
intervention for proper troubleshooting and repair, a
significant number can be delegated to autonomic [1]
software.

We are developing a platform called the Agent
Based High Availability (ABHA) that provides
autonomic recovery for batch jobs running on cluster

and grid computing environments. ABHA is being
tested in the context of the U.S. Department of
Energy's STAR project [2] at Lawrence Berkeley
National Laboratory (LBNL). We are now evaluating
it on production facilities there.
2. Architecture

A complete model for autonomic job recovery has
to address four problems: 1) recognition of job failure;
2) determination of appropriate failure recovery,
which may require diagnosis to select between
alternatives; 3) the ability to initiate recovery actions;
and 4) using that knowledge to avoid or mitigate the
failure in the future.

 ABHA uses a collection of distributed agents to

address these problems. Agents provide robustness,
local monitoring and recovery with global

communication, and separation of concerns for
creating new error management details.

Figure 1: ABHA Architecture

Figure 1 depicts the core components of the system
in a typical configuration. Agents collect information
about the system and jobs running on it and share that
information with other agents by producing events
that are distributed by a centralized Facilitator.
Agents use this shared information to predict and
diagnose job failures, make job recovery
recommendations, and autonomously perform job
recovery.

Agents can be deployed on various nodes
throughout the cluster as dictated by the configuration
of the site. For example, agents can gather information
from and issue commands to distributed resource
managers (e.g. Condor [3] or LSF [4]), filter and
interpret information collected from other system
monitors (e.g. Ganglia [5]), provide detailed
information from specific jobs, or collect information
from services deployed through the system (e.g. NFS).

ABHA deploys a centralized Reasoner (based on
the Java Expert System Shell [6]) that interprets rules
that are run against the events sent to the Facilitator.
The behavior of remote agents can also be specified
using rules. ABHA provides C++, Java, and Perl APIs
for developing agents. The Facilitator is implemented
using the Java Message Service (JMS) API and can be
configured to provide fail-over and persistent event
storage. A graphical user interface allows inspection
of events and control of agents.
3. An Example

One example provides an illustration of the
functionality of ABHA and the kinds of recovery
issues that it can address. The STAR production
cluster at LBNL [7] maintains a clustered file system
for storage of experimental data. Each node is referred
to as a disk vault. The typical STAR batch job will be
assigned to run on one of 344 compute nodes and will
access data that is remotely mounted on one of the 65
disk vaults. If too many jobs try to read data at the
same time, the disk vault goes into a thrashing mode
and only reboot can bring it back. A reboot can be
avoided by intervening when disk vault I/O reaches a
critical value. An administrator can suspend jobs
accessing the overloaded vault, adjust their resource
requirements, and shepherd each job them the queue
until the load on the vault reaches acceptable levels.

We developed and tested a solution to this problem
on our local cluster. Rules loaded by the Reasoner
agent direct diagnosis and recovery. The main rule is
paraphrased below.

A ganglia agent filters information from the
ganglia monitor, sending high_diskvault_load
when the load on one of the disk vault machines
exceeds a threshold.

The Reasoner agent then requests the tcpdump
agent to determine which machine consumes the most
I/O bandwidth with respect to the vault. The tcpdump
agent posts this information as a
max_dvio_consumer event.

The Reasoner then requests the lsf agent to
determine the jobs running on the offending host, and
returns these in an lsf_job event. The rule then
requests mount information from local_node_monitor
agent on the node on which the job is running. The
local_node_monitor agent returns this information in
a job_mounts event. The Reasoner then follows the
THEN part of the rule: it suspends jobs running
against the disk vault, adjusts the priority of the
offending job, and once the offending job has finished,
restarts remaining jobs, until the load on the disk
vault returns to normal.
4. Remaining Work
We are evaluating on the PDSF production cluster. A
Grid service implementation of ABHA is also being
developed for the STAR Grid project [7].
References
1. Chess, D., Kephart, J.: The Vision of Autonomic
Computing. IEEE Computer Magazine 1 (2003) 41-50.
2. STAR experiment website http://www.star.bnl.gov/.
3. Condor project website http://www.cs.wisc.edu/condor/.
4. Platform Computing LSF http://www.platform.com
5. Ganglia project website http://ganglia.sourceforge.net/.
6. JESS website at http://herzberg.ca.sandia.gov/jess
7. Parallel Distributed Systems Facility website
http://www.nersc.gov/nusers/resources/PDSF/

IF(high_diskvault_load ON ?dv AT ?T1)
 AND(max_dvio_consumer ?dv ?node ?T1)
 AND (lsf_job ?node ?job ?T1)
 AND (job_mounts ?job ?dv)
THEN
 (lsf_suspend (jobs_using_vault ?dv))
(restart ?job)
 (UNTIL(normal_diskvault_load ON ?dv)

 (lsf_restart (pick ?jobs)))

