
 1

Advanced Scheduling Technology for Shorter Resource

Constrained Project Durations

Annaka Kalton

Robert A. Richards, Ph.D.

 Stottler Henke Associates, Inc. (SHAI) Stottler Henke Associates, Inc. (SHAI)
San Mateo, CA 94404, U.S.A. San Mateo, CA 94404, U.S.A.

 AACE2008.R.RichardsPhD@Neverbox.com

Abstract— Due to the inherent complexity of resource constrained scheduling, the project durations of resource
constrained project plans can be 10%, 20%, 50% or more longer than needed. This paper demonstrates that the
scheduling engine significantly effects the project duration even for relatively small resource-constrained projects
consisting of a two dozen tasks, and that the effect can become enormous as the number of tasks grows into the
thousands and the types and quantity of resources expands. Unfortunately, the algorithms used by most
commercial project planning software for resource leveling are relatively inefficient for scheduling resource-
constrained projects. This paper reviews some of the literature on this topic showing different techniques and
results showing the major difference in schedule duration due to the scheduling engine. Real-world experience
from NASA projects, and an example from Boeing work per the B787 Dreamliner are provided to further illustrate
the real-world impact.

1. INTRODUCTION

When developing a project plan there are various ways of turning the goals of the project into a set of activities
and an overall schedule. Usually one of the first steps after determining all the activities that must be performed
as part of the project, is to determine any and all the time-based dependencies between activities. That is, for any
activity all the activities that must be completed before that activity can start must be modeled. This is normally
done with the assistance of a commercial project management software, such as Microsoft Project, Primavera's
Project Planner (P3) / P6 / SureTrack, Deltek's Open Plan, or a variety of other commercially available software.
Once all the activities and the temporal/technical constraints are modeled for those activities, the next stage may
be to insert a default duration for each of the activities as well as a start date for the project.

At some stage during the planning process the issue of the who, what, where, for each of the activities has to be
addressed. That is, for each activity who is going to perform this activity, what equipment or tools etc. are going
to be needed to perform this activity, and where is this activity going to be formed; or put another way, what are
the resources that are needed for each of the activities and how are these needed resources going to be modeled
if at all. The who is the most common resource, people are required for almost every activity, (exceptions include
curing processes that may require only space & time). The what may or may not be important to every activity, for
example, if all that is required for the person to complete the activity is their computer most likely that computer is
available to them 24 hours a day and therefore that resource is not normally modeled, however, many activities
require equipment that is limited, such as, fork lifts, tractors, and possibly special tools that are shared amongst
many people. The where can also become a very important resource because activities performed by people
require space, for construction being performed in a room only so many people and equipment can fit in that room
and certain activities may not be compatible simultaneously.

So the person who is modeling the project has to decide how these resources are going to be handled. Many
times they are not explicitly modeled, but a scheduler may realize that a critical piece of equipment cannot be
used in parallel and may implicitly model such resource constraints by putting in temporal/technical links for
certain tasks that use that resource so that that resource is not overburdened.

There is a trade-off between how complex the model is and how many resources are actually in that model and
the potential benefits of using a more complex model. As the model becomes more complex, then the project
management software can be used to greater effect to verify there are no conflicts and furthermore it can consider
all the resource constraints to develop an efficient overall schedule that realistically models the real-world
situation. For example, it is easy to develop an original model and then discover when resource requirements are
modeled that the currently available resources at certain junctures in the project are not sufficient, so one or more
of the tasks at these junctures will have to be rescheduled to manage the constraint. However, the project
management software can also provide graphic depictions of the resource allocations across the project, and

 2

from this information it may be easy to discover that by increasing the number of a few inexpensive resources
many bottlenecks can be eliminated. Again, when using project software (e.g., Primavera P6), resource leveling
means resolving conflicts or over allocations in the project plan by allowing the software to re-arrange tasks
automatically to resolve the conflicts. Unfortunately, the challenge of resource leveling is a non-trivial problem.

Let’s return to the non-resource constrained situation first. In this case the scheduling engine needs to take into
account all the technical/temporal constraints when determining the schedule. In the mathematical sense this
problem is solvable and every project management software package should output the same result. However,
once resources are introduced the problem becomes much more complex. This can be understood intuitively by
considering all the resources that could be required to complete an activity. A single real-world activity could
require multiple people each needing specific skills, each of the people may need to have access to specific
pieces of equipment which are in limited supply, furthermore the space were the activity occurs is shared by other
activities so this activity can not occur when some or all of those other activities. There could be other types of
constraints that may to be considered also. It is obvious that the resource constrained situation is significantly
more complex than the purely temporal case. Mathematically, the resource-constrained project scheduling
problem is NP-hard (nondeterministic polynomial-time hard). This means that there is realistically no way to
guarantee that the result provided is the optimal result.

It is likely that most users of commercial project management software are NOT aware that the results from the
resource leveling process are not optimal, and could be improved upon significantly. It is ironic, or at least
disappointing, that project teams that have put in the significant effort and cost to create a resource-constrained
model could reap huge time and cost savings simply by running there already built model through a different
scheduling engine.

Figure 1 illustrates the potential impact of different scheduling algorithms in a resource-constrained domain. It
includes the critical path for reference (i.e., the schedule assuming infinite resources) via white (non-filled) boxes.
Also shown is the resource constrained critical path (RC-CP) of the same project schedule when taking into
account limited resources. The only difference in determining the schedules is the actual scheduling algorithm.
When a less efficient scheduling method is used the unnecessarily long schedule (shown with darker filled-in
rectangles) will give an erroneous impression of the time in which the project could potentially be completed. The
schedule with lighter filled-in rectangles is a more efficient RC-CP schedule. The only difference was the
scheduling engine applied to the problem.

The following sections will provide more details on the challenge of resource constrained scheduling and the
potential benefits of improved scheduling.

 3

2. SCHEDULER CAN HAVE SIGNIFICANT EFFECT EVEN FOR SMALL PROJECTS

To illustrate the effect that scheduling decisions can have on the overall project, a small project network will be
used. It is fortunate that these effects can be seen at this scale because due to the inherent complexity of the
resource constrained scheduling (RCS) problem, it is difficult/impossible to visualize what is occurring for larger
networks. The illustrative network is from Demeulemeester et al. [1] and is shown in Figure 2.

Figure 1. Comparison of Resource-Constrained Critical Paths

 4

Figure 2. Simple Project Network

The information in the figure is defined as follows:

 Task name/number: # inside circle

 Activity duration: # above node

 Resource units required: # below node.

The Critical Path (i.e., scheduling assuming infinite resources) is 7 units of time. Next a resource limit is set.

 5 units of resource available.

Since the problem is small enough the actual globally optimal schedule can be found and it is illustrated in Figure
3 that is the minimum resource loaded project duration is 7 units of time.

Figure 3. Optimum Resource-Constrained Schedule

However, according to Leus [4] when this is scheduled with Microsoft Project (version unstated) the result
consumes 9 units of time and the resulting schedule is as shown in Figure 4.

Figure 4. Results from MS Project

 5

Similarly, according to Leus [4], when this RCS is scheduled with ProChain software (version unstated) the result
consumes 8 units of time and the resulting schedule is as shown in Figure 5.

Figure 5. Results from ProChain

The problem of scheduling while taking into account resources is non-trivial, even for small projects, note that this
problem only dealt with one type of resource. This illustration is NOT intended to show that either MS Project or
ProChain is a better scheduler because each has strengths and weaknesses depending on the particular project
being scheduled. The point is that different software will almost invariably give a different result, especially as the
problem becomes larger and more complex.

This illustration should hint at the level of complexity that occurs as many more different types of resource
constraints are introduced. For example, in many domains, such as aircraft assembly and construction there are
numerous space related issues (only so many workers will fit in a given space, and some actions may
permanently eliminate possible work space), so space because a significant resource that needs to be managed
and some of this resource is expended. In many domains, including spacecraft preparation, are a number of
additional safety considerations that act similarly to resource constraints and further complicate the efficient
scheduling.

3. SMALL CONSTRUCTION EXAMPLE

The above example was an academic example developed to illustrate scheduling engine effects on a scale that
was easy to understand and the global optimum could be easily found. This section’s example is from work done
by Ming Lu and others [2][3], dealing with a real-world construction problem in Hong Kong. The interesting aspect
of this example is that it is only 33 tasks. However there are 8 types of resources (e.g., laborers, crane, backhoe,
roller) and multiple resource calendars. The actual network is shown in Figure 6.

Figure 6. Construction Sub-project

 6

Professor Lu utilizes a Particle Swarm Optimization-Based Approach [2], which is relatively computationally
intensive compared to schedulers used in commercial project management software, but does show
improvement. Results comparing Primavera P3 against Professor Lu's results are shown in Table 1.

Table 1. Schedule Comparison for Construction

15/Computing time (sec)

13,508,600
[9.01M &

4.43M]

13,992,750
[9.45M &

4.55M]

Total project cost
(Hong Kong dollars)

[direct cost & indirect cost]

275283Total project duration (d)

4
4
3
2
5
1
8
4

4
4
3
2
5
1
8
4

Bar benders
Backhoes
Cranes
Carpenters
Concreting

laborers
Drainlayer
Skilled laborers
Rollers

Resource

Exp. 1:
Adjust activity

priority

Base case:
Activity

priority
suggested by

P3

Scenario

15/Computing time (sec)

13,508,600
[9.01M &

4.43M]

13,992,750
[9.45M &

4.55M]

Total project cost
(Hong Kong dollars)

[direct cost & indirect cost]

275283Total project duration (d)

4
4
3
2
5
1
8
4

4
4
3
2
5
1
8
4

Bar benders
Backhoes
Cranes
Carpenters
Concreting

laborers
Drainlayer
Skilled laborers
Rollers

Resource

Exp. 1:
Adjust activity

priority

Base case:
Activity

priority
suggested by

P3

Scenario

Even for this relatively small part of a construction project the difference is already ~3%. Of course, construction
projects can consist of 1,000s, or 10s of thousands of tasks, with the resultant differences in scheduling engines
growing proportionally.

4. ADVANCED SCHEDULING TECHNOLOGY

Many branches of science and engineering from operations research to artificial intelligence have developed
techniques to find relatively efficient/optimum solutions to the resource constrained scheduling problem in realistic
timeframes. This is essence of the whole field of operations research (OR), that is, OR is an interdisciplinary
branch of applied mathematics which uses methods like mathematical modeling, statistics, and algorithms to
arrive at optimal or good decisions in complex problems. Thus many scheduling engines have been developed for
various applications, furthermore there are entire conferences dedicated to planning and scheduling, including
The International Conference on Automated Planning & Scheduling (ICAPS).

Even with all the advancements being made in the scheduling arena, commercial project management software is
not utilizing these advancements. There are many plausible reasons to not implement advanced scheduling
technology. First consider all the other capabilities that project management software needs to deal with, and the
fact that the majority of users do not even use the resource modeling and resource leveling capabilities of the
software. There does not seem to be a demand in the marketplace for more efficient resource constrained project
scheduling, this may be because most users do not know that they are not presently receiving the optimum
results or again it could be because such a small percentage of users model resources. Another major reason
could be the relative difficulty of implementing advance scheduling technology. By continuing to use the current
scheduling techniques, project management software developers can concentrate on implementing new features
instead of endlessly trying to improve one feature.

The rest of this section describes some of the factors that must be considered to build and advanced scheduler
that also executes efficiently. Briefly, there are techniques that can provide good schedules but may take too long
to schedule to be practical, for example, genetic algorithms can find relatively efficient schedules but the run times
can become days for real-world problems. This may be practical for the initial schedule, but most schedules will
need some re-scheduling during the execution of the project, and when this re-scheduling is needed it may not be
practical to wait days or longer for the results. So the advanced scheduling here will describe techniques that can
run resource-constrained projects of 10,000 activities in the minutes timeframe not days timeframe.

 7

The scheduling engine needs to handles the basics of a project model; activities, groups of activities, and the
resources associated with the activities. The following bullets describe some of the factors that need to be
considered so that realistic projects can be modeled, scheduled, verified & understood.

 Constraints – Temporal, resource, capacity change, and spatial constraints define the relationships
among the scheduled elements. Temporal constraints specify what the temporal relationship of two
elements should be. Resource constraints indicate that two elements should use the same resource.
Capacity change constraints indicate that a given task has an impact on a resource’s capacity (e.g.,
contributes capacity or removes capacity). Finally, spatial constraints allow the user to specify that two
elements should (or should not) be next to each other, or in the same spot.

 Resource Sets – Allow for the grouping of related resources into different sets to take advantage of all
useful attributes. Activities can then request these sets as part of their resource requirements, reflecting
the idea that any properly qualified resource could perform a corresponding activity. This also gives the
user the freedom to group one resource differently in different situations.

 Resource Requirements – Allows the user to associate resource requirements with any activity, group of
activities, or resource. The first reflects the case where a single activity requires a resource; the second
reflects the case where a full group of activities needs to use one resource (e.g., a project needs a project
manager); the third reflects those occasions when a resource needs another resource to operate properly
(a large, specialized piece of lab equipment needs lab space; an engine needs fuel). These requirements
may be defined directly in terms of resources, when only one resource can satisfy the requirement; or in
terms of resource sets, when any of a group of resources may satisfy the requirement. It also allows the
user to designate alternate ways in which the set of resources may be satisfied. For example, a training
course might require an experienced instructor for the duration, or a regular instructor with half-time
support from a specialist.

 Reports –Various textual and graphical reports need to be available because of the complexity of the
scheduling problem and the need to convey information about the schedule efficiently. For example, the
resource display, shown in Figure 7, depicts tasks using a given resource at any given time.

 8

Figure 7. Resource Display

 Calendars – Calendars permit the user to associate a calendar with a task or resource to dictate its
standard schedule, and any exceptions that schedule might have. These may include yearly holidays or
one-time events. A “five day” activity will likely take very different amounts of calendar time if it is
scheduled in late December than if it is scheduled in February. The scheduling engine needs to
dynamically cross-reference these calendars in the course of scheduling; for example, a task that
requires a mechanic who is available for two shifts a day will inherit this calendar; if it itself had a daytime
only calendar, it would be assigned a calendar reflecting the intersection of the daytime calendar and the
mechanic’s shift calendar.

 Conflict Viewing – The advanced scheduler needs to intelligently resolve conflicts, but a schedule can be
over-constrained, resulting in a schedule with one or more conflicts. Such elements need to be
highlighted (e.g., displayed in red), so the user can see and deal with them. In addition, a global view of
all conflicts in the schedule is useful, an example of this view is provided in Figure 8, where the conflicts
are broken down first by resource, and then by time frame.

 Ignoring Conflicts – There are occasions when there is a conflict, but the user knows it is not a “real”
conflict - they know that a vendor’s delivery is going to be late, or that two classes can, in this situation,
use the same room intermittently. In such a situation, the user should be able to specify that a conflict be
“ignored”. After being ignored, it will no longer be displayed as a conflict, and the conflict manager will not
try to resolve it.

 9

Figure 8. Resource Conflicts

 Default & Customized Scheduling – For ease of use a default quality and prioritization scheme that has
proven itself across a variety of domains should be provided. Since resource-constrained scheduling is
such a complex problem some parameters should be made variable so it can be better adapted to
different domains. In all cases the scheduler will investigate different resource allocations before it begins
scheduling, allowing it to pinpoint possible trouble spots – the resources with the most elements vying for
their potential use. It then works around these bottle necks, scheduling the elements away from them as
much as possible, and leaving only those elements that must use them.

 Customization – The architecture should be designed for extensive customization. Needs and priorities
can vary widely from one company to another, even within a single domain, and the program needs to be
able to reflect that. This customizability also allows the program to take expert domain knowledge into
account, because this knowledge can easily be encoded into the heuristics that the system relies upon to
make its decisions. An example of a customizable high-level architecture is shown in Figure 9 showing
the modular design and the separation of the front end from the scheduling engine.

 Scheduling Heuristics – In order to find a high-quality schedule in a short amount of run time, it is
necessary to use a battery of heuristics. A subset of these heuristics are tailored from one domain to
another, to get the best solution for a given class of problems. For example, a more temporally-based
model (with a lower resource requirement to temporal constraint ratio) can be scheduled effectively by
taking the critical path into account, and scheduling elements on or near the critical path earlier in the
process; however, this may be quite damaging in a more heavily resource-restricted model. Because of
this the best scheduling systems will always provide some degree of tuning, and a good engine should
permit some degree of adaptation. Different heuristics can impact different stages of the scheduling
process, and should be able to be changed independently for a new domain.

 10

To summarize, an advanced scheduling system needs to combine a variety of scheduling techniques, intelligent
conflict resolution, and decision support to make scheduling faster and easier. The software’s scheduling
decisions need to take into account domain knowledge, any number of constraints, and resource requirements.
Once the project is scheduled a series of graphical displays that allow the user to see the resource allocations
and the temporal relationships among the elements needs to be provided.

Figure 9. Aurora Scheduling Engine Architecture

 11

REAL-WORLD EXAMPLE

To illustrate the benefits of advanced scheduling on actual real-world problems, the lessons learned from a
particular scheduler, Aurora, are utilized. It is not intended to imply that Aurora is best for all applications, but only
that it demonstrates many of the core factors of an advanced scheduling engine.

Aurora evolved out of the needs of NASA and later the United Space Alliance, and finally in its application to
industry. Aurora evolved over many generations, and the latest generation is the result of a major re-design,
where Stottler Henke systematically looked at every planning and scheduling system Stottler Henke had ever
developed, and looked at all the decisions that a planning and scheduling system has to make and designed and
implemented an architecture such that it was easy to customize every one of those decisions. This latest
evolution has been chosen by the United Space Alliance as the onboard planner / scheduler for astronauts to use
on the Crew Exploration Vehicle, and is also in operational use by Boeing for the final assembly of the Boeing
B787 Dreamliner.

Aurora is used in the planning and scheduling of extremely complex processes involving thousands of operations.
Each operation can require a combination of resources (facilities, equipment, personnel). Aurora is adaptable to
different domains that each have their own set of additional constraints, examples include the safety limitations
and floor plan layout coordination involved in preparing components for the International Space Station (ISS);
non-concurrency and offset constraints to allow necessary safety and practicality controls over scheduling
astronaut time; and physical space constraints, including addition and removal of these constraints, involved in
airplane assembly. Finally, Aurora has evolved to meet the real world challenges of endless changes to the
schedule caused by late deliveries, other delays (e.g., launches), and malfunctioning equipment.

The example used in this section is drawn from the final assembly process of the Boeing B787 Dreamliner that
occurs at Boeing's facility in Everett, Washington. The entire assembly process consists of multi-thousands of
tasks, and as described above most tasks have a multitude of resource constraints.

A sub-project of the entire project consists of about 300 tasks, the resource-constrained critical path of this sub-
project is what is shown in Figure 1 above. In this case, two different scheduling setups ("prioritization scheme" in
Aurora parlance) were tried in Aurora, and one can see the large difference in results. Again, since scheduling
techniques can not find the global optimum it is good to have a flexible, easy to modify scheduler so it can be
tuned to different domains. That is, even though one setup may be superior in this case, it may prove inferior
under different scheduling challenges.

In order to utilize this project with commercial off-the-shelf (COTS) project management software it had to be
simplified somewhat because of the Boeing specific situations (such as ergonomic constraints) that could not be
modeled in COTS products. This simplified model was scheduled in MS Project 2003 and Aurora, the results
were:

 Aurora = 40.87 hours
 MS Project 2003 = 58.23 hours
 Primavera P3 = 60 hours

The ratio for Aurora/MS Project 2003 is (40.87/58.23) is 70.2 or 70.2%. So the

Aurora schedule is ~30% shorter.

(or stated another way, the MS Project schedule is ~42.5% longer than the Aurora schedule).

As is obvious from this real-world case, the differences in the scheduling result is huge. As more and more of the
entire assembly process is modeled the disparity between tools increases.

As evidenced by the Aurora case where even changing the parameters in Aurora can result in significantly
different results, the tool is benefited by having more than one scheduling option available. Thus probably the
greatest weakness of current COTS project scheduling tools is that they all (seem to) include just one scheduling
engine. To reiterate, these specific results do not imply that Aurora is always better, but that different commercial

 12

project management tools will come up with different results, and those results may be far from what could be
calculated with current scheduling technology.

6. CONCLUSIONS

In this paper we have shown that resource constrained schedules and therefore resource constrained project
management is greatly affected by the underlying scheduling engine – more so as the project becomes larger and
includes larger numbers of resource requirements and other non-temporal constraints. From the literature and
the experience of comparing Aurora with commercial project management software there are situations where
projects using these commercial tools could benefit significantly from advanced scheduling technology.

We have used some examples from the literature and the Aurora scheduling engine to demonstrate the effect the
scheduling engine can have on the resulting schedule. The primary conclusion is that the underlying scheduling
engine can greatly impact the results. History has proven that it is so far impossible to build a scheduling solution
that is best in all situations, so a beneficial approach would be to maintain a pool of possible scheduling engines
or engine configurations, and apply all of them to models in a new domain. Because of their differing strengths
and weaknesses, some would perform more effectively on some domains than in others. Once all had been
applied to a given model or set of models, the best engine for the purpose could then be selected for subsequent
resource-constrained critical path application, both during the planning phase and the execution phase. It is
usually easy to select the best schedule, as it is generally the schedule with the shortest flow time. If possible, the
best solution could then be further tailored to maximize the benefit, but the key point is that the scheduling system
has a significant impact on a project and should be given corresponding consideration.

It is likely that most users of commercial project management software are NOT aware that the results from the
resource leveling process are not optimal, and could be improved upon significantly. It is unfortunate that project
teams that have put in the significant effort and cost to create a resource-constrained model may not know that
they could potentially reap huge time and cost savings simply by running there already built model through a
different scheduling engine.

REFERENCES

[1] Demeulemeester, E., Herroelen, W.S., Simpson, W., Baroum, S., Patterson, J.H. and Yang, K.-K. (1994). On
a paper by Christofides et al. for solving the multiple-resource constrained, single project scheduling problem.
European Journal of Operational Research, 76, 218-228.

[2] Lu, M, Wu, D.P., and Zhang, J.P.(2006) “A Particle Swarm Optimization-Based Approach to Tackling
Simulation Optimization of Stochastic, Large-Scale and Complex Systems”, Lecture Notes in Computer
Science, Vol 3930, pp 528-537, Springer Berlin / Heidelberg

[3] Lam, H.C. Lu, M., (2006). Critical Path Scheduling Under Resource-Availability And Activity-Interruption
Constraints Proceeding Of 2006 Annual CSCE Conference Of The Canadian Society For Civil Engineering,
Page No: Ct-035 1-9, Calgary, Canada, May, 2006.

[4] Leus, R. (2003). The Generation of Stable Project Plans: Complexity and Exact Algorithms. PhD Thesis,
Department of Department of Applied Economics, Katholieke Universiteit Leuven, Naamsestraat 69, 3000
Leuven, Belgium.

