
 978-1-4577-0557-1/12/$26.00 ©2012 IEEE
 1

Adaptive Autonomous Communications Routing
Optimizer for Network Efficiency Management

Robert Richards
Stottler Henke Associates, Inc.

951 Mariners Island Blvd., Suite 360
San Mateo, CA 94404

Richards@StottlerHenke.com

Jeremy Ludwig
Stottler Henke Associates, Inc.

951 Mariners Island Blvd., Suite 360
San Mateo, CA 94404

Ludwig@StottlerHenke.com

Abstract— Maximizing network efficiency for NASA's Space
Networking resources is a large, complex, distributed problem,
requiring substantial collaboration. These networking
resources include the Deep Space Network (DSN), Space
Network (SN), TDRSS spacecraft, Near Earth Network (NEN),
and future Exploration Destination networks, which are being
integrated under the NASA Space Communications and
Navigation Program (SCaN). This paper deals primarily with
adaptive autonomous network management to schedule
communication events between space and space/ground assets.
The three central problems of interest in scheduling space
communications are: 1) constraints defining missions’
communication needs are complex and often come in
competing shades of gray; 2) resources are heterogeneous,
expensive, and frequently oversubscribed, resulting in
conflicted schedules; and 3) mission criteria for a “good
schedule” that meets their objectives vary widely from mission
to mission, making it difficult to satisfy mission preferences. In
this paper we describe the development of a prototype
networking and scheduling framework that facilitates the
development of more intelligent and optimizing scheduling
algorithms within a mixed-initiative architecture. This
framework is capable of representing the complex and diverse
constraints found in the space communications scheduling
domain, allowing for a valid schedule to be created. Once a
valid schedule has been produced, a multi-objective resource
optimizer refines the schedule to maximize mission satisfaction.
Mixed-initiative conflict resolution helps to address any
remaining scheduling issues. An example combining
scheduling for the NEN and TDRSS is used to illustrate the
features of the existing prototype and outline future work.

TABLE OF CONTENTS

1. INTRODUCTION ... 1	
2. SYSTEM DESCRIPTION 3	
3. INTEGRATION OF CURRENT NEN, DSN & SN
SCHEDULERS INTO COMMON SCAN SOLUTION .. 7	
4. AACRONEM PROTOTYPE 8	
5. CONCLUSION .. 9	
REFERENCES ... 10	
BIOGRAPHY .. 10	

1. INTRODUCTION
Increasing NASA’s Space and Ground networking
efficiency is a large, complex, distributed challenge. These
networking resources include the Deep Space Network
(DSN), Space Network (SN), TDRSS spacecraft, Near Earth

Network (NEN), and future Exploration Destination
networks, all of which will be integrated under the NASA
Space Communications and Navigation Program (SCaN).
The technologies to increase efficiency must be adaptable to
a variety of network operating environments, ranging from
the long latency limited bandwidth of deep Space
Communications to near Earth environments with traffic
flow over global partner assets, and the future internet; that
is, the entire space network that includes ground to ground
segments, in addition to space-ground links. In addition, to
provide a solution that will be adopted by the now mostly-
separate DSN, NEN & SN communities, the solution must
be flexible in its development and deployment so as to
leverage as much commonality across the communities as
possible and allow for maximal re-use of what is already
working.

Stottler Henke’s solution, termed AaCRONEM (Adaptive
Autonomous Communications Routing Optimizer for
Network Efficiency Management) provides the capabilities
and flexibility required. For example, our technological
foundation dealing with adaptive autonomous network
management can be leveraged as needed, while our current
user interface is designed to be adapted easily, so that it can
be modified to mimic current user interfaces if desired.
Almost all Stottler Henke solutions interface with other
systems, so AaCRONEM will, similarly, interface with
current scheduling tools and/or data sources as needed. The
AaCRONEM prototype, and our related Air Force Satellite
Control Network (AFSCN) scheduling solution also under
development, already demonstrate sophisticated, unique and
innovated capabilities not otherwise available.

Stottler Henke's Aurora scheduling technology, which is
already in operational use by NASA, provides much of the
core functionality for AaCRONEM. AaCRONEM also
utilizes as a component OPNET Technologies’ network
simulation tool, Joint Communication Simulation System
(JCSS), in order to create optimal schedules for network
resources based on planned utilization, and then to adapt
based on how the actual utilization differs from the plan in
real-time, as well as adapting to network anomalies.

There are three central problems in scheduling space
communications: 1) Constraints defining missions’
communication needs are complex and often come in
competing shades of gray; 2) resources are heterogeneous,
expensive, and frequently oversubscribed, resulting in

 2

conflicted schedules; and 3) mission criteria for a “good
schedule” that meets their objectives vary widely from
mission to mission, making it difficult to satisfy mission
preferences.

These problems persist in addition to the non-trivial
challenges in maximizing the efficiency of ground-to-
ground segments of the entire network. Through
combination of our technology with OPNET JCSS, our
solution incorporates the entire space networking domain,
while leveraging many of the state-of-the-art solutions for
maximizing network efficiency already existing in JCSS.
This allows us to simulate and test our enhancements in a
global sense. JCSS is a DISA distributed simulation tool,
built on the COTS OPNET Modeler platform. OPNET
Modeler provides best-in-class network modeling and
simulation capabilities including extensive support for
analysis of wired, wireless, and satellite communication
technologies. As an industry standard, Modeler/JCSS allows
us to develop a COTS/GOTS tool that it is logical for those
working on other promising techniques to integrate with,
thus providing a framework for incorporating the best
techniques for a better, more complete solution.

These three central problems in scheduling Space
Communications are considered in more detail below.

Space Communications Constraints

The communication requirements that vary from one
mission to another, combined with the range of resource
capabilities, result in an array of complex request
constraints. A mission may require, prefer, or allow:

• N out of M requests per day at ground station G
(e.g. AURA requires 2-3 contacts per day at
Wallops out of the ~14 per day that it requires
overall on the NEN).

• Not to schedule the same aperture on consecutive
orbits (e.g. AQUA on the NEN).

• A mixture of services required across a given day,
where the request order does not directly matter but
the service usages may have their own separation
requirements (e.g. EO-1 requires at least 3 S-Band
supports between 12:00 and 21:00 out of the 6 or 7
per day, where S-Band contacts need to be at least
5 hours apart but at most 8 hours apart on the
NEN).

• Requests to share antennas if the same antenna
orientation can hold both craft in view (e.g., Mars
communications). In such cases they can share a
downlink, but not an uplink (MSPA protocol for
the DSN).

• Requests to be handed off from one ground station
to another in order to meet the duration
requirements; some handoffs require a certain

degree of overlap to complete successfully
(segmentation protocol for the DSN).

• Some requests actually need to be handled by two
different stations in order to perform a triangulation
(DDOR protocol for the DSN).

This is a sample of just a few of the disparate constraints
that need to be considered by an adaptive network
management system. This basic complexity is compounded
by the fact that these constraints are a requirement for some
missions, a preference for others, and permissible for
conflict resolution for still others. Furthermore, this is a
dynamic environment: both the communication demands
and network supply change over time, and they may deviate
significantly from the original expectations when planning
occurred.

The other challenge is that, as varied as the known
constraints are, it is likely that more constraints will be
required in the future as new types of resources are added,
and new mission needs are identified.

Conflicted Schedules

Communication resources are frequently over-subscribed.
This is partly because they are limited in number, partially
because they are not homogeneous, and in part because they
cannot readily be added as demand goes up. The ever-
increasing number of missions virtually guarantees that this
will remain an ongoing problem.

This problem is aggravated by two factors: communications
can only take place in specific view-periods, when an
antenna is in view (e.g. this is especially problematic for
low earth orbit satellites on the NEN network), and
furthermore, missions tend to request more passes than they
technically need. These dynamics both increase the
likelihood of conflicts, the first by adding constraints to the
scheduling problem, and the second by adding passes that
are desirable but not necessary.

Conflict resolution is, frequently, a highly manual process in
some of the systems still in use. This is partly due to current
software limitations, and, in part, because many of the
constraints cannot actually be modeled in current systems.

Mission Satisfaction

Different missions have different criteria for whether they
are satisfied by their pass allocations. In some cases
maximal communication duration is preferred. In others,
they may care more about the quality of the communication
time allocated – whether the allocations are at antennas with
the highest possible PCA elevation angle, are at a given time
of day, and/or are supported by a particular service. Of
course, this “quality” definition varies as well.

This can make it difficult for the adaptive network
management system to effectively balance the requirements
and the complex constraints, both hard and soft, and for it to

 3

allocate limited resources in such a way as to make the
various missions as happy as possible with the end result.

Conclusion

Currently much of this complexity is handled by the human
schedulers, who use their own knowledge to ensure: that the
more obscure constraints are correctly satisfied; that the
appropriate tradeoffs are made in solving conflicts; and that
the missions’ most critical needs are met. However, this is
not a practical long-term solution as the problem complexity
increases.

There are two reasonable long-term solutions to this
problem: to automate as much of the scheduling process as
possible, and to allow the missions to do more of their own
scheduling / conflict resolution. The advantage of the first
approach is that computers handle scalability much better
than do people. The advantage of the second is that it shifts
much of the burden of requirement definition and fine-
tuning back onto the missions, which as-is have the best
understanding of their requirements and preferences.
According to DSN’s “Scheduling SW Requirements”, DSN
is already pursuing this goal.

Success for the former approach would require correctly
modeling the complex constraints that dictate the request
relationships, and explicitly considering mission needs.
Success for both approaches would require significant
conflict resolution support.

All of these factors highlight the need for a sophisticated
scheduling system: capable of capturing the constraint
complexity required to model the interactions across
different passes and complex resources; that can assist the
user throughout the scheduling and conflict resolution
process, both in terms of offering options and advice, and in
terms of insuring that the different mission needs are being
met and balanced; that can optimize the schedule while
balancing tradeoffs among these various constraints and
their relative importance for different missions.

AaCRONEM should not be seen as a solution that is trying
to subsume all the current scheduling systems that are
utilized by the separate communities, but as a framework
that can be leveraged to complement what is already
available. For example, if the DSN community has specific
scheduling requirements that are beyond what is in Aurora,
but are already implemented, AaCRONEM could call that
system, appropriately. Thus AaCRONEM will provide
integration between the various systems to create a result,
which leverages the best of all worlds to create a superior
integrated common solution.

Figure 1 below shows Aurora’s more standard default
interface on the first and the Air Force interface as
implemented by Stottler Henke second. Note that the
interface is decoupled from the underlying scheduling
engine, so either interface could be used to see the same
results.

Figure 1: Example of Adaptability of the User Interface

2. SYSTEM DESCRIPTION

Figure 2 shows the high-level architecture of the proposed
system, including user interactions; note that the dashed
arrow indicates the input into the system during actual
execution, where AaCRONEM will compare actual
performance against predicted performance and determine if
any adjustments are needed. Each of these components is
described in greater detail below. Note that the scheduling
module may consist of multiple underlying schedulers,
some of which could be external; e.g., in certain DSN

 4

situations the current DSN scheduling engine could be
called as one of the schedules.

Figure 2: High-level architecture and user interaction

More details of the overall Scheduling Module are shown in
Figure 3. This module is assembled leveraging our existing
intelligent scheduling system architecture, Aurora
(http://www.stottlerhenke.com/products/aurora), which
provides for customization of each decision point in the
scheduling processing. For example, it already includes the
notion of scheduling cycles, an evolving schedule, the need
for a separate preprocessing module, handles resource usage
profiles and visibility requirements, and provides for both
pluggable resource/time window selection methods and
satisfaction of temporal, spatial, and arbitrary constraints.
Note that the box labeled “Different Algorithm Scheduler”
might represent an NASA scheduler, such as the current
scheduler used by the SN.

If there are multiple schedulers, then a preprocessor is
needed. The roles of the Preprocessor are to 1) call each
applicable scheduler, 2) grade each returned schedule, and
3) select the best schedule. Emergency service requests
requiring attention immediately would be passed to the
Emergency Response Scheduler for immediate scheduling,
so that the appropriate tasks can be passed back and
executed immediately. Otherwise, or for the remaining
requests, the Preprocessor selects one or more appropriate
schedulers. (These schedulers will all be independent, and
therefore would easily fit into a distributed architecture with
each scheduler having its own computing resources, if
required.)

Figure 3: High Level Scheduler Architecture.

Figure 4 shows more details of the components of a
Scheduling Module and their interactions.

Even with multiple internal schedulers, there will be sharing
of scheduling components. In addition to the scheduling
system core there will be several supplemental components
that will be used in the primary scheduler and possibly other
schedulers.

• Extensible Constraint Model, which will
encapsulate the complexity of the diverse
constraints.

• Schedule Modification Rule Base, which will
encapsulate knowledge about how requests can
be shifted and manipulated, and how to put them
back.

• Schedule Modification Case Base, which will
keep track of information about what types of
actions are preferred in what scenarios, and
update this information through time.

• Mixed-Initiative Conflict Resolution Assistant,
which will analyze conflicted areas of the
schedule to find possible solutions and then
work with the user to solve the problem.

• Multi-Objective Resource Optimizer, which will
perform local optimization on the schedule in an
effort to improve mission satisfaction.

• Execution Monitoring and Repair module, which
will monitor the actual overall space network
under the auspices of SCaN to determine if any
modifications are necessary to the plan due to
the network state being different than assumed
during the planning phase.

 5

Extensible Constraint Model

There are two challenges involved in modeling the complex
constraints that define the preferences and requirements of
mission communications. First, a variety of known
constraints impact the relation of timing across requests,
resource assignments across requests, and which
assignments should be preferred in what situations. Second,
because the existing constraints are derived from the
interaction between complex mission requirements and
complex resource attributes, it is inevitable that new types
of constraints will have to be accommodated in the future.

To encapsulate this complexity in a way that can readily be
accessed from the appropriate points in the scheduling
process, while still allowing for easy extensibility, we have
a separate module that manages the complex constraints.
This module will be expanded to handle constraints across
sets of requests, and will know how to maintain the
constraints, as well as what operations to take to soften
them.

The extensible constraint model will encapsulate all known
inter-request constraints. These constraints will not
necessarily be between two specific requests (as in normal
precedence constraints); some might link a number of
requests (e.g., out of M linked events, N events need to be at
ground station G within time period T). The alternative to
this would be to break the constraints into more atomic
versions, but this would involve maintaining parallel plans
and then picking one (e.g., for the N events at ground station
G, it could be broken down to the first and second event at
ground station G . . . the first and third event at ground
station G . . . the first and fourth event at ground station G . .
.), but this would result in an exponential number of options
complicating an already-challenging scheduling problem.

In the case of most of these complex constraints, it is far
more efficient to model them in their complexity, and use
sophisticated heuristics to satisfy them (e.g., in the N events
at ground station G, the system might keep track of how
many more events in the linked group had yet to be
scheduled, and try harder and harder to schedule an event at
G the fewer there are relative to the number required).

Schedule Modification Rule Base

The schedule modification rule base is a library of schedule
manipulation techniques for use in conflict resolution and
schedule optimization. The AaCRONEM system will
enhance the schedule modification rule base already
provided in the AaCRONEM prototype and the Air Force
Satellite Control Network scheduler code base. It contains
logic for common atomic operations such as: shifting a
request earlier or later in the current view period; shifting a
request to an earlier or later view period; and shifting a
request to a specific resource or set of resources. All of
these operations can be performed while paying attention to
other requests (trying to satisfy constraints and not over-
allocate resources), or not (usually as a first step in a multi-
step modification).

The rule base is be able to combine these atomic operations
into multi-step modifications such as shifting a series of
spaced requests earlier or later; performing an N-way swap
among different requests; and rescheduling a constrained set
of requests starting with the bottleneck request and working
out from there.

The rule base is also responsible for recording the state of
each request before any attempted modifications, so that a
request can be restored to its previous state, if necessary.
This is especially important for exploring different options
to present to the user without impacting the final schedule.

Schedule Modification Case Base

The schedule modification case base keeps track of past
modification strategies that were either performed manually
by the user or approved by the user. These are cross-
referenced by details of the situation, most notably the user,
constraints, and mission(s) involved. This helps capture
both explicit and implicit information about the relative
priorities different missions give to their different
constraints.

For example, it might be perfectly acceptable for one
mission to have a request scheduled fifteen minutes later
than the maximum time indicated by the maximum
separation constraints – but for another mission, such a
decision might mean the loss of valuable data. Another
example tradeoff would be the choice between getting 10
contacts on a given day, or 9 contacts with all preferences
met.

What aspects of a request that missions care about vary
broadly, and this case base helps capture such knowledge
through time to make future conflict resolution and

Schedule Model .

Aurora
Reconfigurable Scheduling

System

Preprocessor

Queue Initializer

Prioritizer

Scheduler

Constraint Propagator

Conflict Manager

Postprocessor

Extensible
Constraint Model

Multi-Objective
Resource
Optimizer

Mixed-Initiative
Conflict

Resolution
Manager

Schedule Modification
Case Base

Schedule Modification
Rule Base

Constraint Definition

Constraint Definition

Constraint Definition

Constraint Definition

Constraint Definition

Constraint Definition

. . .

Constraint Definition

Constraint Definition

GUI

Figure 4: Detailed architecture for a scheduler

 6

optimization easier and more robust. AaCRONEM will
leverage the case base functionality available from the
AFSCN Scheduler code base, and depending on the
priorities of NASA, develop a SCaN-specific case base.

Mixed-Initiative Conflict Resolution Assistant

The mixed-initiative conflict resolution assistant analyzes a
conflict to find possible ways of solving it. It may either
run in response to the user (e.g., the user selects a conflicted
request and asks for resolution options), or function
automatically. Normally, once the system is done
producing a schedule, it will use down time as available to
analyze conflict resolution options for any conflicts, so that
it can be ready for a user request.

First, the conflict resolution assistant uses the schedule
modification rule base to record the start state of the
problem element. It will then look at the constraints
involved and use the schedule modification case base to
determine the range of possible options for rescheduling the
problem request. Using the schedule modification rule base,
it will try each option, recording any that worked. It then
considers each view period where the problem request could
potentially schedule while satisfying all of its constraints,
and performs the same basic analysis process on the
requests that are already scheduled at those locations (trying
to move them out of the way by softening their constraints).
Finally, if there are insufficient conflict-resolution options
that succeeded in finding a solution, it will perform the
second step again, but this time, instead of only looking at
the requests in view periods that could satisfy all of the
constraints, it will also consider requests in view periods
that could satisfy most but not all of the problem request’s
constraints.

These steps give the assistant a set of potentially acceptable
options. It will rank these options according to the case
base preferences and the actual request parameters, and
display them to the user on request. When the user selects
the desired strategy, it will redo the requested operation, and
present the user with the result. The assistant may also have
a mode wherein the user can automatically resolve conflicts
in the mission(s) over which they have full authority, based
on softening criteria in the case base. This allows the
system to fix any conflicts as long as fixing them did not
involve altering requests belonging to other missions. In
this mode it compiles a report of all of the actions taken and
displays it to the user, with the option to revert any of the
conflict resolution actions. AaCRONEM will leverage the
mixed-initiative conflict resolution assistant functionality
available from the AFSCN Scheduler code base. Figure 5
shows the results of this assistant in the Air Force satellite
scheduling solution that AaCRONEM will be leveraging.

Figure 5: Result of the Mixed-Initiative Conflict Resolution

Assistant

Multi-Objective Resource Optimizer

The multi-object resource optimizer will serve as a localized
resource optimization strategy that focuses on taking a
viable schedule (or viable sections of a conflicted schedule)
and modifying it to improve mission satisfaction with the
results.

The optimizer will have two primary components: a local
optimization component and an analysis component. The
local optimization component will have a great deal in
common with the conflict resolution analysis, in that it will
be trying different types of schedule modifications (many of
which involve swapping elements, although constraint
softening will be less prevalent). It is expected that they
will share some common code modules. The difference is
that, whereas the conflict resolution’s options will be graded
and then evaluated by the user, the optimization options will
be evaluated internally by the analysis component.

The analysis component will be able to determine the
quality of a request’s assignment as well as the tradeoffs
among different assignments (a related but more holistic
analysis). It will be invoked to determine the order in which
candidate optimizations should be tried, and to evaluate the
success level of the optimization results. It may also be

 7

invoked, as part of scheduling, to perform minor
optimization during the primary scheduling process (at
which point it is often easier to shift requests; a complete
schedule is a complex and inter-related network with limited
flexibility for optimization).

In the process of this search and analysis, the logic will
build up a history of the optimization process that may be
displayed to the user. This will allow the user to evaluate
the impacts of the optimization, and potentially revert
portions of it.

Execution, Monitoring and Repair Module

AaCRONEM may monitor the actual overall space network
under the auspices of SCaN to determine if any
modifications are necessary to the plan due to the network
state being different than assumed during the planning
phase. Using OPNET tools, AaCRONEM will be able to
anticipate how the actual space network will react to current
and near-term conditions. Furthermore, based on the
planned knowledge of upcoming network demands and the
current understanding of the network capacity,
AaCRONEM will be able to determine if it would be
prudent to modify/repair the schedule so that it will actually
be able to execute successfully.

What-if module -- since OPNET Modeler is able to simulate
the entire network and allow the user to modify the network
itself, place different loads on the network, etc., many types
of what-ifs become possible. This allows greater flexibility
in validating plans before they occur.

This module will also deal with emergency scheduling or
any other real-time change to the schedule (such as a launch
slip), in these situations there is the need to perturb the
existing schedule as little as possible. That is, only the
scheduled communication events that are immediately
impacted by the new high-priority communications due to
the emergency or launch slip should have their schedules
changed. This is because real-time schedule changes will
take some effort, specifically for each change to notify the
appropriate parties (the user and the managers of the
affected ground stations and other resources).

Case-Based Reasoning

Case-Based Reasoning (CBR) is the field of AI that deals
with the method of solving a current problem by retrieving
the solution to a previous similar problem and altering that
solution to meet the current needs. Case-Based Reasoning
is a knowledge representation and control methodology
based upon previous experiences and patterns of previous
experiences. These previous experiences, or "cases" of
domain-specific knowledge and action, are used in
comparison with new situations or problems. These past
methods of solution provide expertise for use in new
situations or problems. Based on our extensive experience
with planning and scheduling systems, we believe that this
project is a natural application for CBR. In particular, CBR
could be used to guide the system’s actions by allowing it to

suggest conflict resolution strategies either to customers or
that it could apply itself.

3. INTEGRATION OF CURRENT NEN, DSN
& SN SCHEDULERS INTO COMMON SCAN

SOLUTION
Per NASA input and feedback, there are challenges beyond
the significant challenge of scheduling the SCaN network.
A successfully solution that will be willingly adopted across
the NEN, DSN & SN communities will require the
following:

• An open communications loop with all the
communities. This will include learning the
current scheduling solution, procedures and
methodologies for each community.

• Determining, in consultation with each community
and the SCaN office, what current capabilities
should be accessed through interfacing with current
systems. E.g., leveraging a current community’s
scheduling engine, then interfacing with these.

• In addition, a community’s scheduling engine
could be used in parallel with AaCRONEM’s
internal Aurora-based scheduling; this would
provide for separate parallel scheduling algorithms
to be simultaneously called, with their resulting
schedules being dynamically evaluated.

• Learning how AaCRONEM will need to fit in the
current data flow, i.e., determining what systems
AaCRONEM will receive information from, and
what systems it will output information to, then
interfacing with these.

• Providing updates rapidly, so that in addition to
major releases, minor releases and concepts will be
shared with the communities to garner feedback
important to directing our development.

• A prime example is the user interface; it is easy to
make changes to it rapidly between major releases.

• Providing enhancements in a way that is seamless
to current users. So if AaCRONEM provided
everything currently available in a way that
operates very similarly, and then offered
enhancements desired by the users, then it will be
accepted, if not demanded, by the users.

• Being as open as possible; making all interfaces
both simple and fully documented. The goal is that
NASA and others can manipulate the interfaces
without needing to consult Stottler Henke.

 8

The AaCRONEM architecture supports the above
integration requirements or the way we have developed the
Air Force AFSCN system shows that we follow these
requirements, as they are also needed for the AFSCN
system. For example, as mentioned above the AaCRONEM
architecture includes the “Different Algorithm Scheduler”,
this could represent a NASA scheduler, such as the current
scheduler used by the SN, this address the second bullet
item. As shown above the interface is flexible so if SN
users needed some differences in the UI versus DSN users
this can be easily supported and maintained.

4. AACRONEM PROTOTYPE
The AaCRONEM prototype demonstrates some central
features of the software specification, using data combining
assets in the Near Earth Network (NEN) and Tracking and
Data Relay Satellite System (TDRSS). In the following
sections we describe the method with which the prototype:

• Takes Space Communications and Navigation
(SCaN) model files as inputs. These files specify
satellite network resources and missions,
communication requests, and constraints.

• Provides a user interface for editing the model
specified in data files, and for performing
scheduling.

• Displays scheduling results in assignment and
conflict summaries, and navigable graphical
schedule.

• Provides facilities for mixed-initiative conflict
resolution in generated schedules.

The example data used in the prototype includes a variety of
NASA, DoD, and other U.S. governmental and international
research satellites, in combination with TDRSS satellites.
Network resources include the associated NEN ground
stations, commercial providers, and TDRSS ground stations.

Scheduling and Results

After invoking scheduling using a UI button, the Aurora
scheduling engine is employed to map mission
communication requests to resources. Higher priority
missions are scheduled first, allowing them to thereby
satisfy their communication requests first. The Aurora post-
processor performs pre-paid optimization, attempting to
maximize pre-paid use and to move excess pre-paid
communications to non-pre-paid satellites.

Results of scheduling are provided, including:
• An assignment summary of missions to ground

facilities, see Figure 6.
• A conflict summary showing unresolved resource

and temporal conflicts, if any. Conflicts may be
shown per resource, per event, or as ordered within
the schedule, see Figure 7.

• A navigable spatial allocation plot of resources
relative to missions, see Figure 8.

Figure 6: Assignment summary

Figure 7: Conflict summary

The allocation plot shown in Figure 8 displays resources
(e.g., PF1) relative to missions (e.g., AQUA), on a color-
coded timeline.

• Lighter Blue – no access between PF1 and AQUA
• Darker Blue – other missions scheduled on PF1, or

turnaround time for PF1
• White – open access relative to the AQUA
• Green – scheduled AQUA communication during

an access period
• Red – conflicted AQUA communication

In the schedule there is a conflict indicated by the red
portion of the timeline, which occurred because a request
had to be scheduled when no access was available. Various
means of resolution may be used to address the conflict.

Figure 8: Allocation plot

Conflict Resolution

Conflicts normally occur because no schedule is possible
without violating constraints. For instance, the stackup

 9

conflict occurs when the end of the day is reached without
all requests for that day being satisfied. Most conflicts must
therefore be resolved by overriding constraints. Some
conflicts can be resolved without relaxing constraints, for
instance by moving a high-priority mission to a particular
alternate valid spot, but conflicts usually arise because there
are insufficient available resources to satisfy all requests.

Constraints may be overridden manually by changing
schedule properties in the Aurora UI or graphically by
clicking and dragging within the spatial plot, see Figure 9,
which has the effect of changing constraints behind the
scenes. Resource constraints may also be changed using the
model editor. Any of those actions may invoke a
rescheduling, which in turn may automatically resolve other
conflicts. Figure 9 demonstrates an example where AQUA
and AURA are scheduled for the same view period due to
constraints, a situation resolved by clicking and dragging
AURA to a new view period.

Figure 9: Before and after of a graphical constraint override in
the spatial plot

Example scenario with NEN and TDRSS

The following spatial plots show an example of conflict
resolution employing TDRSS. The schedule attempts to
satisfy requests for the WISE satellite using only the
BRKLY ground station. In this case, communication
requests exceed the available access periods, and resource
conflicts result, indicated by the narrow red boxes in Figure
10.

Figure 10: WISE satellite cannot complete the defined
communications using its given ground stations

These conflicts can be resolved in this scenario by updating
the antenna options to allow WISE to access TDRS1. This
resolves most of the resource conflicts, see Figure 11

Figure 11: Conflicts resolved when WISE can access TDRS1 in
addition to its own ground station

The AaCRONEM Prototype can solve quite complex
situations already for both NEN & SN, either separately or
in conjunction.

5. CONCLUSION
AaCRONEM will allow more-accurate modeling, support
easier and more satisfactory conflict resolution, and result in
more-satisfactory schedules for the missions. Then, during
execution of the plan, AaCRONEM will monitor the
situation, and adapt the plan and data routing to successfully
complete a plan. AaCRONEM is based on Aurora and
Aurora has outperformed every existing scheduling system
in every domain in which it has been applied. AaCRONEM
will be developed to be familiar to current users of the NEN,
SN & DSN networks and thus feel like a natural extension
of the tools they are already familiar with. AaCRONEM is
also leveraging a project for the Air Force with similar goals
for the Air Forces’s satellite network. The process of
creating this solution has begun, and includes the
development of a prototype NEN/SN scheduler and
deconflictor, which proved the automated
scheduling/optimization/deconfliction capability of our
approach

 10

REFERENCES
 [Barbulescu et al., 2006] L. Barbulescu, A. Howe and D.

Whitley, “AFSCN Scheduling: How the Problem and
Solution Have Evolved”, Mathematical and Computer
Modeling, 2006.

[Chien et al, 2000] S. Chien, G. Rabideau, R. Knight, R.
Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smit, F.
Fisher, T. Barret, G. Stebbins and D. Tran, “ASPEN-
Automating Space Mission Operations using Automated
Planning and Scheduling”, SpaceOps 2000, Toulouse,
France, 2000.

[Clement and Johnston, 2005] B.J. Clement and M.D.
Johnston, “The Deep Space Network Scheduling
Problems”, Proceeding of the Innovative Applications of
Artificial Intelligence, 2005.

[Globus et al., 2003] A. Globus, J. Crawford, J. Lohn and A.
Prior, “Scheduling Earth Observing Satellites with
Evolutionary Algorithms”, In International Conference on
Space Mission Challenges for Information Technology,
Pasadena, CA 2003.

[Gooley 1993] T.D. Gooley, “Automating the Satellite Range
Scheduling Process”, Master Thesis, Air Force Institute of
Technology, 1993.

[Questus, web] Questus.
http://questus.unitedspacealliance.com/

[Space Ops] “USA Develops Space Ops Toolset of the
Future”. Press Release. SpaceRef. (4 Apr. 2006). Online.
13 Aug. 2007
<http://www.spaceref.com/news/viewpr.html?pid=19433
>

BIOGRAPHY
Robert Richards, Ph.D. is the Principal
Scientist and Manager of Stottler
Henke’s Navy helicopter training
contract, OMIA. OMIA is a PC-based
desktop training system that teaches
crewmembers the Navy’s new MH-60R
and MH-60S helicopters. Dr. Richards
has taken OMIA from a Research and
Development SBIR project to a deployed
training tool that has been awarded a

$4.1 million IDIQ contract. Dr. Richards received his Ph.D.
from Stanford University in mechanical engineering with an
emphasis on machine learning and artificial intelligence. Dr.
Richards is managing and has managed multiple projects for
both commercial and government clients, including various
intelligent-tutoring-system-based training projects. He is the
principle investigator for VERTICAL, a Navy project to
develop an innovative analytic test tool that can be used to
support vertical takeoff and Visual Landing Aid analysis
and testing. He was also the PI for INCOT, an Air Force
project that developed automated tools for network layout.
These projects exemplify his wide range of research and
application area interests, including: training system
development; applying automation and artificial intelligence
techniques; and decision support tool development for life-
critical situations. Dr. Richards has publications in all these
areas.

Jeremy Ludwig, Ph.D. is a project
manager / research scientist at Stottler
Henke, where his research areas
include intelligent training systems,
machine learning, and behavior
modeling. He is leading the software
development effort for the OMIA
common cockpit helicopter training
system for the MH-60S and MH-60R.

Dr. Ludwig has also been involved in a number of other
research projects that utilize game and simulation
technology for training. These projects include a mobile,
game-based training system developed for the iPhone to
support the training needs of F-16 and F-22 pilots, a game-
based second language retention system also delivered on
the iPhone, an on-line simulation-based training system with
learning adversaries in a multi-player virtual world for
desktop training, and SimVentive™, an integrated
development environment for the rapid construction of
training games and simulations. Jeremy was a co-chair for
the 2008 AAAI Fall Symposium on Adaptive Agents in
Cultural Contexts and has been involved in a number of
tutorials on the use of artificial intelligence techniques in
serious games at IITSEC over the past four years. He joined
Stottler Henke in the fall of 2000 and holds a PhD in
computer science from the University of Oregon.

