
A Case-Based Reasoning Approach to Internet Intelligent Tutoring
Systems (ITS) and ITS Authoring

Richard Stottler & Sowmya Ramachandran

Stottler Henke Associates, Inc.

1660 So. Amphlett Blvd. Ste. 350
San Mateo, CA 94402

Phone: (650) 655-7242 Fax: (650) 655-7243
stottler@shai.com, sowmya@shai.com

Abstract

This paper describes three aspects of our ITS research and
development project currently underway for the Air Force.1 The
purpose of our project is to develop both a general ITS authoring
tool and a specific ITS to train AWACS Weapons Directors. Our
approach is innovative in three ways. First, instruction,
assessment and remediation all occur primarily in the context of
a simulated scenario, or case, with the student performing actions
(primarily cognitive) in as close to an operational environment as
possible. The second innovation is the use of the Internet to
provide distributed tutoring through a “loose confederation” of
ITSs. The third innovation is the development of an authoring
tool, for use by non-programmers, to enter both the domain and
pedagogical knowledge, required for the ITS, which is then used
to automatically create the corresponding ITS. This provides an
ITS authoring capability.

Use of Cases in ITS Development
The original motivation for our use of cases within an ITS
was from the perspective of Case-Based Instruction. That
is the notion that students learn best from examples
(scenarios) and that their abilities should be tested within
the context of scenarios which were as close to those that
they would experience in an operational environment as
possible. As we expanded our ITS work, it became
apparant that cases are useful for other reasons as well.
Stottler Henke Associates, Inc. (SHAI) works within many
domains in which it is considered impossible or
impractical to build a computational system which can
perform at the level of the human expert. This prevents us
from using the strategy employed in the development of
many ITSs that of developing an explicit expert model
which can perform at the required level of expertise. Thus
cases became important that as a means of determining if a
student’s actions in a scenario were correct, in domains
where a general system to produce these correct actions
was unattainable. A third, related use of cases is as a basis
for the representation of the domain expert’s knowledge,
which is discussed immediately below.

1 See Air Force Contract Number: F41624-98-C-5007

Cases for Knowledge Representation
There are several useful knowledge elicitation strategies
related to Cases. These are amply described in [Stottler
1988]. Recently cognitive psychologists have begun to
utilize many of the same knowledge elicitation techniques
and describe them under the term Cognitive Task Analysis
[Klein 1997]. These methods seek to elicit knowledge by
having an expert explain his actions in a particular
scenario, and the reasoning behind those actions. In many
complex domains, this is the only way that experts can
explain their thought processes. The knowledge and
reasoning processes are too complex to explain generally;
they can only be described in the context of specific
circumstances. In these types of domains, using cases as a
basis for representing expert knowledge is clearly called
for.
 The expert is asked to present an actual specific
problem and its solution, with an explanation of the steps
required to produce the solution. The explanation refers to
principles or concepts underlying the problem’s solution
process. Thus, the principles serve as the organizational
structure of the knowledge, and the scenarios serve to
illustrate concepts. Because a case-by-case approach to
knowledge gathering is highly intuitive, authoring of a
training course is greatly simplified and requires no special
computer training. Further, maintenance of the ITS and
addition of updated course material is accomplished
primarily through addition of new cases. As described in
the next subsection, cases are very naturally used in
instruction. They also allow for a very rich representation,
since additional knowledge can be easily attached to the
case. This additional knowledge can even be in the form
of natural language or multi-media simulations, since they
can be presented to the student before, during, or after the
scenario (e.g. they can be used to debrief the student after
an exercise).
 In our ITSs each case (or scenario) includes (1) a
multi-media description of the problem, which may evolve
over time (as in tactical scenarios); (2) a description of the
correct actions to take, possibly including order-

independent, optional, and alternative steps; (3) multi-
media explanations of why these steps are correct; (4) the
list of methods which determine whether the steps have
been correctly executed by the student; and (5) the list of
principles required to know the correct action to take,
typically extracted from the explanations that accompany
the solution steps.

Case-based Instruction

In complex domains, instruction is often complicated by
the need for the student to master a variety of concepts and
to apply them in unique situations and in different
sequences. In these kinds of domains, the student must
develop a competence not only in the relevant facts and
skills, but also an understanding of the concepts
underlying these procedures. Given these requirements,
the use of cases, or scenarios, facilitates the development
of the required cognitive depth and flexibility. For
example, AWACS Weapons Directors (WDs) have to
understand the evolving air battle, then give situation
updates and make recommendations to the appropriate
pilots, without overwhelming them with information.
AWACS instructors have learned that playing many
tactical scenarios is extremely important in training
weapons directors.
 Our ITSs use an extensive case-base of scenarios
as exercises and examples to teach students. Research has
revealed that students learn best when they are presented
with examples of problem-solving knowledge, and when
they are required to apply the knowledge to real problem-
solving situations. The case-base of examples and
exercises captures such realistic problem-solving situations
and presents them to the student, typically within a
simulation. The student is required to interactively solve
the problems, thus giving him an opportunity to practice
the necessary skills as well as to reveal areas of knowledge
deficiency. The ITS monitors the student as he performs
these simulations, diagnoses the strengths and weaknesses
of his knowledge based on his performance, updates the
internal model of his knowledge, and tailors instruction in
order to correct the weaknesses. Each action that the
student was to perform in the specific case was specified
by an expert along with an explanation as to why that
action is appropriate. That explanation references the
principles that the student must know, at least intuitively,
to be able to decide to perform the correct action. Thus, if
a student’s action is incorrect, the ITS can hypothesize a
weakness in one of the principles listed in the action’s
explanation. Each action of each exercise allows the ITS
to gather further evidence. This evidence is used to
determine the principles, or knowledge, in which the
student is weak.

 Depending on its diagnosis of the student, the ITS
may display an example relevant to the principles being
taught at the time, along with the expert’s correct actions.
In simulated scenarios, the expert’s actions “play” the
scenario for the student. Since each action also includes
an explanation as to why that action is appropriate in the
scenario, this information is available for explanations to
the students. It may test the student with an exercise
which uses principles that it believes he has learned. It
may debrief the student on the mistakes of his last
exercise. Or, it may formulate a remedial course of
instruction, based on the deficiencies in the student’s
current mental model. These remediations may take the
form of examples or general topic information, followed
by exercises to test the effectiveness of the remediations.
 In this project and other ITS projects for the
military, we have found that military instructors and
trainers heavily favor the use of tactical simulations and
believe that the best trained officer will be the one who has
experienced the most tactical scenarios. Similarly, we
have found in our work with astronauts at NASA, that the
best trained astronaut will also be the one who has
experienced the largest number and variety of scenarios.

Cases for Correct Action Determination

The most difficult and domain dependent aspect of the
process described above (after the simulation itself) is the
determination of the correctness or incorrectness of a
student’s action. Since we work in domains where it is
impractical to build a general expert system to produce the
correct actions, instead we store the expert’s knowledge of
the correct actions specific to a scenario within the
scenario itself. This knowledge typically takes one of three
forms, based on the domain and the ability of the student
to alter the flow of the scenario in unexpected or multiple
ways. The simplest representation lists the correct actions
at the appropriate time in the scenario. Obviously this will
only be applicable if the flow of the scenario is unaltered
by actions of the student or if at each mistake, the student
is immediately corrected, and thus the scenario’s timeline
is restored. For each scenario, methods are required for
comparing these correct actions to the actual actions
produced by the student. These methods may also be able
to assess which principles associated with a particular
action the student knows and which ones he doesn’t based
on a whole or partially correct action. For example, in
some AWACS Weapon Director (WD) scenarios, the
WDs are supposed to advise rather than command. Thus
the scenarios can be structured such that the simulated
pilots ignore WD mistakes, and the scenario timeline
procedes unaltered. The WD actions are the advice,
specific utterances made to specific pilots over the
simulated radio, usually less than 20 words each. The

correct actions are the utterances of expert WDs,
previously recorded while they played the scenario. The
software methods to compare the correct actions to the
student’s actions must convert each to a text
representation. The WDs, according to their orders, are
supposed to use a specific grammar. This allows the text
to be parsed and compared piece by piece. The software
methods can then assign knowledge of principles based on
subparts of the student’s utterance. Some principles, such
as “give the most important information first,” actually
span multiple actions, as well.
 Of course these types of scripted scenarios
preclude one of the most important learning opportunities -
for students to see the results of their own mistakes.
Mistakes a WD makes in real missions can easily cause
loss of life, including his own. So there is a strong desire
to use more flexible and dynamic simulations and
scenarios, where a student’s actions can radically affect the
outcome. Since these simulations are typically continuous,
there is an infinite number of variations that different
students can create. In fact, in these types of situations the
same scenario never plays exactly the same way twice,
since minor timing differences of student actions affect the
precise trajectories of the simulated players. Clearly,
listing the correct action at the appropriate time, based on
the way the expert played the scenario is inappropriate,
since when the student plays the same scenario, his
timelime will diverge from the expert’s, often in radically
different ways. For example, a particular scenario may
dictate that the student remain covert while gathering
information. If he understands how to do this, the enemy
may never detect his existence, and thus never attack him.
However, a student who does not understand the principles
of covertness may turn on his active sensors, be detected
by the enemy, and thus come under attack. At this point
he may correctly assess the need for and execute several
self-defense actions. These actions were not required of
the expert or of other students in the same scenario who
performed the information gathering tasks in the correct,
covert way. Yet, they are entirely appropriate for the
situation in which the student finds himself, and not only
should they not be considered incorrect, but he should also
get credit for understanding the appropriate self-defense
principles.
 The solution is the second of the three forms of
knowledge. We attach to each case, one or more expert
systems. Each expert system is designed to handle a
specific type of condition (such as missile attack) which
might arise. Each e.s. is activated by its own set of
preconditions. These are much easier to develop in a case
specific way, than in the general case. Many can also be
re-used across scenarios, with little or no modification. In
other efforts SHAI has developed techniques to quickly
develop expert systems in military domains for the

representation and execution of tactical knowledge to
produce tactically correct actions [Stottler 1996]. Methods
are still required to compare the correct actions to the
student’s actions. For example, it may be that the student
should respond to a particular kind of attack with a set of
self-defense actions within 30 seconds. If nothing else, the
method which compares the student’s actions to the
correct actions must allow for this slight time variation.
Typically there may be other parameters with allowable
variations and several appropriate order-independent
actions as well.
 The third form in which knowledge of correct
actions may be stored and used is in situations where the
system in no way can produce the correct or all the
possible correct actions but for which the knowledge
exists, within the context of a scenario, to evaluate the
appropriateness of the student’s action. For example, to
refine the location of an enemy platform, an aircraft may
be sent to a general area. To keep the aircraft’s home
platform location unknown, it should take an indirect route
to the area. There may be several factors to consider when
determining an appropriate route, many of which may be
considered commonsensical or at least not part of the
course the ITS is teaching. The ITS may not include the
knowledge required to generate a good route.
Furthermore, there may be a very large number of
acceptable routes. But, for the purposes of making sure
that the student understands the concept of taking an
indirect route to the target area, it is fairly easy to devise a
simple calculation to check that the route was indirect.

Distributed, Cooperative ITSs via the Internet
To facilitate cooperation among ITSs, our project
incorporates the concept of a “loose confederation of
ITSs”. The inspiration for this original idea came from the
world wide web and its current usage. Web pages are
developed and maintained by a haphazard, loose
confederation of individuals. People browse one web
page, which may have links to other web pages, which
they may follow and visit, even though the authors of the
separate pages are probably unknown to each other.
Further, search engines exist to help guide end-users to
pages which may be of interest. Our concept for ITSs
follows naturally from this model. The concept is a loose
confederation of Internet ITSs (which know about each
other) maintained by individuals in geographically diverse
locations who have little or no interaction. These ITSs
would tend to be maintained by people with an interest in
education - teachers, university and college professors, and
other organizations with an interest in education.
 ITSs can coordinate their efforts in the training of
a particular individual. The ITSs notify each other of their
existence and training capabilities. One ITS can make

specific training requests of another, remote ITS, passing it
the trainee’s current student model and training needs. A
user interacts with one ITS. When it determines that he
lacks knowledge in a related field, handled by another ITS,
it sends him there, and so on. When he switches from one
ITS to another, his student model is sent to the other ITS
so it instantly knows the state of his knowledge in related
fields and his learning style preferences.
 This idea is a completely new paradigm for ITSs
and could revolutionize education. ITS Authors don't have
to duplicate each other's work but can take advantage of it.
Instead of developing ITSs with all related and
prerequisite knowledge, authors only have to design
systems in their primary field of interest, and let others
take care of related fields. Every student has equal access
to all ITSs and can make use of the best ones in each field,
without having to know about them explicitly: the system
guides them there and passes along the model of the
student’s knowledge and learning style preferences. The
ITSs are universally accessible to students. That is, if an
instructor authors an ITS, he knows it will get used
without having to promote its existence. (i.e. bi-
directional universal education). Authors can concentrate
their time on what they want to teach instead of other
subjects or access and promotional concerns.
 For example, consider four related ITSs - Wave-
Theory, Sound Wave Theory, Electro-Magnetism (EM),
and Calculus. Suppose the student starts out interacting
with the EM Tutor and it determines that the student is
weak in Wave Theory. It sends him to the wave theory
ITS, passing along his student model. While interacting
with the wave theory ITS, the system determines he is
weak in requisite calculus subjects, so it sends him to the
calculus tutor, with his student model and a list of what the
Calculus ITS needs to teach him (he only needs a portion
of the calculus course as a prerequisite for the wave theory
course). After mastering the required calculus subjects, he
returns to the Wave course and then back to the Electro-
Magnetism course. Later, he is assigned to learn the
Sound Wave course. His student model is passed to it, and
it determines that he already knows a lot of wave theory
(from the Electro-Magnetism course), so these topics can
be skipped. Since he has also interacted with the Calculus
tutor (since he needed to, implying a lack of Calculus
knowledge), anything not taught him while there, he's
probably not covered before. If a few additional calculus
topics are required, the ITS sends him back to the calculus
tutor to focus on those topics. The calculus tutor itself
might be a loose confederation of ITSs which each address
different (or possibly overlapping) topics.
 We have already designed and implemented a
scheme which would allow the required communication
between ITSs. In our concept, a central ITS server exists
as shown in the figure below and keeps a master list of all

ITSs, their capabilities, and a global list of principles. The
ITS authoring tool running locally on the author’s machine
is able to get information from and transfer information
back to the central ITS server enabling the author to send
course updates and the instructor to get student models.
Finally, the cooperative ITSs are able to send student
models to each, launch each other, and get information
about each other.

Central
ITS

Server

Student
Student

Student

Author

Author

Author

InstructorInstructor

Figure 1, ITS Server

 An author creates the ITS at one site, in
consultation with the server and sends it the finished ITS
(and any updates later). The student receives at his site the
ITS (and updates) from the ITS Server, and his student
model is transferred to the ITS Server. It can therefore
keep a master list of all students. An instructor can access
the student models of his students from his own site.
Since the local ITS that is running either as a web page or
on the student’s local machine is delivered from the ITS
Server, it can automatically know of related ITSs and the
principles they teach and, when required, request these
related ITSs from the ITS Server to tutor the current
student. SHAI has already implemented the required
Internet communication software and currently maintains
the ITS Server. Since the ITS authoring tool is still under
development, ITSs have not as yet been developed to
reside on this server.
 Perhaps the major issue that will be faced is in the
area of ontology. Each ITS uses its own local language to
describe the principles it teaches and which are illustrated
and/or required in its scenarios. The central ITS maintains
a global hierarchy of the principles taught by each ITS
using a global ontology and maintains a table which
translates the names of the principles in each local ITS’s
ontology to the names of the principles in the global
ontology. It remains to be seen if this relatively simple
scheme will be adequate, whether different instructors not
in communication with each other can cooperate through

it, and how much human intervention may be required to
“clean up” the global hierarchy which necessarily results
from entries made from disparate fields and instructors.
The initial assumption is that all ITSs are authored with
the same Internet ITS authoring tool, but this constraint
can be relaxed later. All that is really required is that each
ITS can describe what it teaches in terms of a (possibly
flat) principle hierarchy, that these can be linked to
principles in the global hierarchy that is maintained by the
ITS Server, and that the ITS can describe how and when it
should be initiated.

ITS Authoring Tool
There are six kinds of knowledge that the must be entered
by the domain and/or instructional expert to create an ITS
for a specific domain. These are the case base of scenarios
to be used as examples and exercises, the hierarchy of
principles referenced from those scenarios, multi-media
descriptions which explain each principle, knowledge used
to asses the correctness of student actions, knowledge used
to assess a student’s mastery of a principle given the
history of his performance in relation to that principle, and
pedagogical knowledge. Methods to enter the scenarios
tend to be very domain specific and closely tied to the
simulation. For tactical scenarios, we typically employ
graphical editors based on an electronic map and
intelligent tactical knowledge entry techniques not
particularly to ITS concerns. The principle hierarchy is
entered through a simple tree-based graphical editor, with
opportunities to browse the global principle hierarchy and
make desired connections between nodes in the local
hierarchy and nodes in the global one. The authors can
also add (but not change) nodes in the global hierarchy.
The multi-media descriptions of principles are entered
using commercial multi-media authoring tools, such as
Macromedia Director. The different ways to represent the
knowledge to determine student action correctness was
discussed in a previous section. While the means of entry
tends to be tied to the type of domain, we have found that
finite state machines are often useful. In the following
paragraphs we discuss the capabilities for entering mastery
assessment and pedagogical knowledge.
 Representation and entry of the knowledge to
assess principle mastery, given a history of actions related
to it, is one of the simplest aspects of the authoring tool.
The author specifies and names the levels of mastery. For
example, those might be novice, intermediate, and expert.
For any principle in the hierarchy, he then defines the
conditions that must be met to attain each level of mastery.
These conditions typically define the percentage of correct
usage of a principle from the last N actions using the
principle in the last M scenarios in a specified time period.
The required parameters are simply entered using a fill-in-

the-blank format. Which principles the mastery level
applies to is determined by which principle node the
author selected in the principle hierarchy editor. The
mastery assessment definitions defined at a higher level in
the hierarchy are inherited by all of its subprinciples unless
over-ridden with a more local definition.
 More complicated is the pedagogical knowledge.
A somewhat simplified description follows. The authoring
tool allows different instructional methods to be defined
for different types of students (based on background and
principle mastery) and different regions of the principle
hierarchy. Aspects of an instructional method include
degree of instructional support; degree of student control;
how much instructional material to present; what kinds of
examples to show, and how many; what kinds of exercises
to present, and how many; type and timing of debriefing;
remediation, and exercise selection.
 Perhaps the greatest challenge in designing the
functionality and capabilities of the ITS authoring tool is
maintaining the proper balance between flexibility/power
and usability. By designing a lot of flexibility in the
instructional method specification, many inputs are
required. Our design philosophy is based on the
assumption that domain knowledge experts (a.k.a. Subject
Matter Experts) are more readily available than
pedagogical experts and that pedagogical knowledge can
be generalized over domains. We therefore have made
pedagogical knowledge specification easy by having the
authoring tool intelligently select default specifications
that an author can choose to over-ride. We are developing
a case base of instructional techniques so that when some
preliminary information about the domain and types of
students is entered, the system selects the most appropriate
default instructional techniques for each type of student
and principle. A Subject Matter Expert is able to generate
an ITS by just specifying domain-specific knowledge
(principles, scenarios, pre-tests/post-tests scenarios), and
using default specifications for pedagogical knowledge.
 A preliminary version of the authoring tool which
allows input of the various types of domain-independent
knowledge required for the ITS, especially the pedagogical
knowledge, now exists. We will soon have a version
which uses this knowledge to create an ITS. We would be
very interested in getting feedback from other ITS
developers as to the default choices we have made, since
we are still early enough in the project to incorporate
feedback.

Current and Future Work

We have applied the case-based ITS approach in a number
of domains. We have developed an operational system for
the US Navy’s Surface Warfare Officer’s School (SWOS),
which they are currently using. We have developed

prototype case-based ITSs for tutoring NASA astronauts
in experiment procedures and the science which underlies
them, for training AWACS Weapons Directors controlling
Air battles, and for training sonar technicians to find
submarine signatures in sonar images. These prototypes
monitor student actions in scenarios, derive a model of the
student’s knowledge, select the most appropriate examples
for instruction and exercises for testing, and select the
topics that address the areas that the student doesn’t
understand. They also provide a facility for the student to
browse those topics himself.
 We are now developing full-scale ITSs for each
of these three areas. In each case, the domain experts and
instructors agreed completely with the case-based
approach to instruction and with our ITS designs and
prototype implementations in particular. In 1999, we will
get more quantitative results as the full-scale ITSs are
used. We are also developing an ITS authoring tool which
attempts to unify these diverse domains. We will then be
able to gauge the degree to which instructors can create
ITSs, without programming or knowledge engineering
assistance.
 We have implemented the software to pass the
needed information from ITS to ITS across the Internet, as
well as to a central repository. We currently are
maintaining an Internet ITS Server, accessible from our
web page, http://www.shai.com. In 1999, we will begin to
field distributed, cooperative ITSs, developed using the
ITS Authoring tool currently under development.

References
Aleven, V. and Ashley, K.D. 1992. Automated generation
of examples for a tutorial in case-based argumentation. In
Intelligent Tutoring Systems ‘92 Proceedings. Montreal,
Canada.

Anderson, J.R. and Reiser, B.J. 1985. The LISP tutor.
Byte, vol. 10. no. 4, pp 159-175.

Klein, Gary and Zsambok, Caroline E., A. eds. 1997.
Naturalistic Decision Making. Mahwah, New Jersey:
Lawrence Erlbaum Associates, Publishers.

Kolodner, Janet L., A. eds. 1993. Case-based Reasoning.
San Mateo, CA.: Morgan Kaufmann Publishers.

McArthur, D., Lewis, M., and Bishay, M. 1993. The Roles
of Artificial Intelligence in Education: Current Progress
and Future Prospects, DRU-472-NSF, RAND Education,
Draft report.

Regian J. W., & Shute, V.J. 1994. “Evaluating Intelligent
Tutoring Systems”, In E. L. Baker and H. F. O’Neil,

Technology assessment in education and training,
Hillsdale, NJ: Lawrence Erlbaum.

Stottler, Richard H., and Parekh, Sujay S., AI Techniques
for Reusable Tactics Expert Systems, Stottler Henke and
Associates, Inc., 107-Tactics FR, November 1996.

Stottler, Richard H., Electric Power Research Institute
Knowledge Acquisition Workshop Handbook, Science
Applications International Corporation, March 1988.

