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Abstract 
 
This paper describes three aspects of our ITS research and 
development project currently underway for the Air Force.1 The 
purpose of our project is to develop both a general ITS authoring 
tool and a specific ITS to train AWACS Weapons Directors.  Our 
approach is innovative in three ways.  First, instruction, 
assessment and remediation all occur primarily in the context of 
a simulated scenario, or case, with the student performing actions 
(primarily cognitive) in as close to an operational environment as 
possible.  The second innovation is the use of the Internet to 
provide distributed tutoring through a “loose confederation” of 
ITSs.  The third innovation is the development of an authoring 
tool, for use by non-programmers, to enter both the domain and 
pedagogical knowledge, required for the ITS, which is then used 
to automatically create the corresponding ITS.  This provides an 
ITS authoring capability. 
 

Use of Cases in ITS Development 
The original motivation for our use of cases within an ITS 
was from the perspective of Case-Based Instruction.  That 
is the notion that students learn best from examples 
(scenarios) and that their abilities should be tested within 
the context of scenarios which were as close to those that 
they would experience in an operational environment as 
possible.  As we expanded our ITS work, it became 
apparant that cases are useful for other reasons as well.  
Stottler Henke Associates, Inc. (SHAI) works within many 
domains in which it is considered impossible or 
impractical to build a computational system which can 
perform at the level of the human expert.  This prevents us 
from using the strategy employed in the development of 
many ITSs that of developing an explicit expert model 
which can perform at the required level of expertise.  Thus 
cases became important that as a means of determining if a 
student’s actions in a scenario were correct, in domains 
where a general system to produce these correct actions 
was unattainable. A third, related use of cases is as a basis 
for the representation of the domain expert’s knowledge, 
which is discussed immediately below. 

                                                           
1 See Air Force Contract Number: F41624-98-C-5007 

 
Cases for Knowledge Representation 
There are several useful knowledge elicitation strategies 
related to Cases.  These are amply described in [Stottler 
1988].  Recently cognitive psychologists have begun to 
utilize many of the same knowledge elicitation techniques 
and describe them under the term Cognitive Task Analysis 
[Klein 1997].  These methods seek to elicit knowledge by 
having an expert explain his actions in a particular 
scenario, and the reasoning behind those actions.  In many 
complex domains, this is the only way that experts can 
explain their thought processes.  The knowledge and 
reasoning processes are too complex to explain generally; 
they can only be described in the context of specific 
circumstances.  In these types of domains, using cases as a 
basis for representing expert knowledge is clearly called 
for. 
 The expert is asked to present an actual specific 
problem and its solution, with an explanation of the steps 
required to produce the solution.  The explanation refers to 
principles or concepts underlying the problem’s solution 
process.  Thus, the principles serve as the organizational 
structure of the knowledge, and the scenarios serve to 
illustrate concepts. Because a case-by-case approach to 
knowledge gathering is highly intuitive, authoring of a 
training course is greatly simplified and requires no special 
computer training.  Further, maintenance of the ITS and 
addition of updated course material is accomplished 
primarily through addition of new cases.  As described in 
the next subsection, cases are very naturally used in 
instruction.  They also allow for a very rich representation, 
since additional knowledge can be easily attached to the 
case.  This additional knowledge can even be in the form 
of natural language or multi-media simulations, since they 
can be presented to the student before, during, or after the 
scenario (e.g. they can be used to debrief the student after 
an exercise). 
 In our ITSs each case (or scenario) includes (1) a 
multi-media description of the problem, which may evolve 
over time (as in tactical scenarios); (2) a description of the 
correct actions to take, possibly including order-



independent, optional, and alternative steps; (3) multi-
media explanations of why these steps are correct; (4) the 
list of methods which determine whether the steps have 
been correctly executed by the student; and (5) the list of 
principles required to know the correct action to take, 
typically extracted from the explanations that accompany 
the solution steps. 

Case-based Instruction 

In complex domains, instruction is often complicated by 
the need for the student to master a variety of concepts and 
to apply them in unique situations and in different 
sequences.  In these kinds of domains, the student must 
develop a competence not only in the relevant facts and 
skills, but also an understanding of the concepts 
underlying these procedures.  Given these requirements, 
the use of cases, or scenarios, facilitates the development 
of the required cognitive depth and flexibility.  For 
example, AWACS Weapons Directors (WDs) have to 
understand the evolving air battle, then give situation 
updates and make recommendations to the appropriate 
pilots, without overwhelming them with information.  
AWACS instructors have learned that playing many 
tactical scenarios is extremely important in training 
weapons directors. 
 Our ITSs use an extensive case-base of scenarios 
as exercises and examples to teach students.  Research has 
revealed that students learn best when they are presented 
with examples of problem-solving knowledge, and when 
they are required to apply the knowledge to real problem-
solving situations. The case-base of examples and 
exercises captures such realistic problem-solving situations 
and presents them to the student, typically within a 
simulation.  The student is required to interactively solve 
the problems, thus giving him an opportunity to practice 
the necessary skills as well as to reveal areas of knowledge 
deficiency. The ITS monitors the student as he performs 
these simulations, diagnoses the strengths and weaknesses 
of his knowledge based on his performance, updates the 
internal model of his knowledge, and tailors instruction in 
order to correct the weaknesses.  Each action that the 
student was to perform in the specific case was specified 
by an expert along with an explanation as to why that 
action is appropriate.  That explanation references the 
principles that the student must know, at least intuitively, 
to be able to decide to perform the correct action.  Thus, if 
a student’s action is incorrect, the ITS can hypothesize a 
weakness in one of the principles listed in the action’s 
explanation.  Each action of each exercise allows the ITS 
to gather further evidence.  This evidence is used to 
determine the principles, or knowledge, in which the 
student is weak. 

 Depending on its diagnosis of the student, the ITS 
may display an example relevant to the principles being 
taught at the time, along with the expert’s correct actions.  
In simulated scenarios, the expert’s actions “play” the 
scenario for the student.  Since each action also includes 
an explanation as to why that action is appropriate in the 
scenario, this information is available for explanations to 
the students.  It may test the student with an exercise 
which uses principles that it believes he has learned.  It 
may debrief the student on the mistakes of his last 
exercise.  Or, it may formulate a remedial course of 
instruction, based on the deficiencies in the student’s 
current mental model.  These remediations may take the 
form of examples or general topic information, followed 
by exercises to test the effectiveness of the remediations. 
 In this project and other ITS projects for the 
military, we have found that military instructors and 
trainers heavily favor the use of tactical simulations and 
believe that the best trained officer will be the one who has 
experienced the most tactical scenarios.  Similarly, we 
have found in our work with astronauts at NASA, that the 
best trained astronaut will also be the one who has 
experienced the largest number and variety of scenarios. 

Cases for Correct Action Determination 

The most difficult and domain dependent aspect of the 
process described above (after the simulation itself)  is the 
determination of the correctness or incorrectness of a 
student’s action.  Since we work in domains where it is 
impractical to build a general expert system to produce the 
correct actions, instead we store the expert’s knowledge of 
the correct actions specific to a scenario within the 
scenario itself. This knowledge typically takes one of three 
forms, based on the domain and the ability of the student 
to alter the flow of the scenario in unexpected or multiple 
ways.  The simplest representation lists the correct actions 
at the appropriate time in the scenario.  Obviously this will 
only be applicable if the flow of the scenario is unaltered 
by actions of the student or if at each mistake, the student 
is immediately corrected, and thus the scenario’s timeline 
is restored.  For each scenario, methods are required for 
comparing these correct actions to the actual actions 
produced by the student.  These methods may also be able 
to assess which principles associated with a particular 
action the student knows and which ones he doesn’t based 
on a whole or partially correct action.  For example, in 
some AWACS Weapon Director (WD) scenarios, the 
WDs are supposed to advise rather than command.  Thus 
the scenarios can be structured such that the simulated 
pilots ignore WD mistakes, and the scenario timeline 
procedes unaltered.  The WD actions are the advice, 
specific utterances made to specific pilots over the 
simulated radio, usually less than 20 words each.  The 



correct actions are the utterances of expert WDs, 
previously recorded while they played the scenario.  The 
software methods to compare the correct actions to the 
student’s actions must convert each to a text 
representation.  The WDs, according to their orders, are 
supposed to use a specific grammar.  This allows the text 
to be parsed and compared piece by piece.  The software 
methods can then assign knowledge of principles based on 
subparts of the student’s utterance.  Some principles, such 
as “give the most important information first,” actually 
span multiple actions, as well. 
 Of course these types of scripted scenarios 
preclude one of the most important learning opportunities - 
for students to see the results of their own mistakes.  
Mistakes a WD makes in real missions can easily cause 
loss of life, including his own.  So there is a strong desire 
to use more flexible and dynamic simulations and 
scenarios, where a student’s actions can radically affect the 
outcome.  Since these simulations are typically continuous, 
there is an infinite number of variations that different 
students can create.  In fact, in these types of situations the 
same scenario never plays exactly the same way twice, 
since minor timing differences of student actions affect the 
precise trajectories of the simulated players.  Clearly, 
listing the correct action at the appropriate time, based on 
the way the expert played the scenario is inappropriate, 
since when the student plays the same scenario, his 
timelime will diverge from the expert’s, often in radically 
different ways.  For example, a particular scenario may 
dictate that the student remain covert while gathering 
information.  If he understands how to do this, the enemy 
may never detect his existence, and thus never attack him.  
However, a student who does not understand the principles 
of covertness may turn on his active sensors, be detected 
by the enemy, and thus come under attack.  At this point 
he  may correctly assess the need for and execute several 
self-defense actions.  These actions were not required of 
the expert or of other students in the same scenario who 
performed the information gathering tasks in the correct, 
covert way.  Yet, they are entirely appropriate for the 
situation in which the student finds himself, and not only 
should they not be considered incorrect, but he should also 
get credit for understanding the appropriate self-defense 
principles. 
 The solution is the second of the three forms of 
knowledge.  We attach to each case, one or more expert 
systems.  Each expert system is designed to handle a 
specific type of condition (such as missile attack) which 
might arise.  Each e.s. is activated by its own set of 
preconditions.  These are much easier to develop in a case 
specific way, than in the general case.  Many can also be 
re-used across scenarios, with little or no modification.  In 
other efforts SHAI has developed techniques to quickly 
develop expert systems in military domains for the 

representation and execution of tactical knowledge to 
produce tactically correct actions [Stottler 1996].  Methods 
are still required to compare the correct actions to the 
student’s actions.  For example, it may be that the student 
should respond to a particular kind of attack with a set of 
self-defense actions within 30 seconds.  If nothing else, the 
method which compares the student’s actions to the 
correct actions must allow for this slight time variation.  
Typically there may be other parameters with allowable 
variations and several appropriate order-independent 
actions as well. 
 The third form in which knowledge of correct 
actions may be stored and used is in situations where the 
system in no way can produce the correct or all the 
possible correct actions but for which the knowledge 
exists, within the context of a scenario, to evaluate the 
appropriateness of the student’s action.  For example, to 
refine the location of an enemy platform, an aircraft may 
be sent to a general area.  To keep the aircraft’s home 
platform location unknown, it should take an indirect route 
to the area.  There may be several factors to consider when 
determining an appropriate route, many of which may be 
considered commonsensical or at least not part of the 
course the ITS is teaching. The ITS may not include the 
knowledge required to generate a good route.  
Furthermore, there may be a very large number of 
acceptable routes.  But, for the purposes of making sure 
that the student understands the concept of taking an 
indirect route to the target area, it is fairly easy to devise a 
simple calculation to check that the route was indirect. 

Distributed, Cooperative ITSs via the Internet 
To facilitate cooperation among ITSs, our project 
incorporates the concept of a “loose confederation of 
ITSs”.  The inspiration for this original idea came from the 
world wide web and its current usage. Web pages are 
developed and maintained by a haphazard, loose 
confederation of individuals.  People browse one web 
page, which may have links to other web pages, which 
they may follow and visit, even though the authors of the 
separate pages are probably unknown to each other.  
Further, search engines exist to help guide end-users to 
pages which may be of interest.  Our concept for ITSs 
follows naturally from this model. The concept is a loose 
confederation of Internet ITSs (which know about each 
other) maintained by individuals in geographically diverse 
locations who have little or no interaction.  These ITSs 
would tend to be maintained by people with an interest in 
education - teachers, university and college professors, and 
other organizations with an interest in education.  
 ITSs can coordinate their efforts in the training of 
a particular individual.  The ITSs notify each other of their 
existence and training capabilities. One ITS can make 



specific training requests of another, remote ITS, passing it 
the trainee’s current student model and training needs.  A 
user interacts with one ITS. When it determines that he 
lacks knowledge in a related field, handled by another ITS, 
it sends him there, and so on.  When he switches from one 
ITS to another, his student model is sent to the other ITS 
so it instantly knows the state of his knowledge in related 
fields and his learning style preferences. 
  This idea is a completely new paradigm for ITSs 
and could revolutionize education.  ITS Authors don't have 
to duplicate each other's work but can take advantage of it.  
Instead of developing ITSs with all related and 
prerequisite knowledge, authors only have to design 
systems in their primary field of interest, and let others 
take care of related fields.  Every student has equal access 
to all ITSs and can make use of the best ones in each field, 
without having to know about them explicitly: the system 
guides them there and passes along the model of the 
student’s knowledge and learning style preferences.  The 
ITSs are universally accessible to students.  That is, if an 
instructor authors an ITS, he knows it will get used 
without having to promote its existence.  (i.e. bi-
directional universal education).  Authors can concentrate 
their time on what they want to teach instead of other 
subjects or access and promotional concerns. 
 For example, consider four related ITSs - Wave-
Theory, Sound Wave Theory, Electro-Magnetism (EM), 
and Calculus.  Suppose the student starts out interacting 
with the EM Tutor and it determines that the student is 
weak in Wave Theory.  It sends him to the wave theory 
ITS, passing along his student model.  While interacting 
with the wave theory ITS, the system determines he is 
weak in requisite calculus subjects, so it sends him to the 
calculus tutor, with his student model and a list of what the 
Calculus ITS needs to teach him (he only needs a portion 
of the calculus course as a prerequisite for the wave theory 
course).  After mastering the required calculus subjects, he 
returns to the Wave course and then back to the Electro-
Magnetism course.  Later, he is assigned to learn the 
Sound Wave course.  His student model is passed to it, and 
it determines that he already knows a lot of wave theory 
(from the Electro-Magnetism course), so these topics can 
be skipped.  Since he has also interacted with the Calculus 
tutor (since he needed to, implying a lack of Calculus 
knowledge), anything not taught him while there, he's 
probably not covered before.  If a few additional calculus 
topics are required, the ITS sends him back to the calculus 
tutor to focus on those topics.  The calculus tutor itself 
might be a loose confederation of ITSs which each address 
different (or possibly overlapping) topics. 
 We have already designed and implemented a 
scheme which would allow the required communication 
between ITSs.  In our concept, a central ITS server exists 
as shown in the figure below and keeps a master list of all 

ITSs, their capabilities, and a global list of principles.  The 
ITS authoring tool running locally on the author’s machine 
is able to get information from and transfer information 
back to the central ITS server enabling the author to send 
course updates and the instructor to get student models.  
Finally, the cooperative ITSs are able to send student 
models to each, launch each other, and get information 
about each other. 
 

Central
ITS

Server

Student
Student

Student

Author

Author

Author

InstructorInstructor

 
 
 

Figure 1, ITS Server 
 

 
 An author creates the ITS at one site, in 
consultation with the server and sends it the finished ITS 
(and any updates later).  The student receives at his site the 
ITS (and updates) from the ITS Server, and his student 
model is transferred to the ITS Server. It can therefore 
keep a master list of all students.  An instructor can access 
the student models of his students from his own site.  
Since the local ITS that is running either as a web page or 
on the student’s local machine is delivered from the ITS 
Server, it can automatically know of related ITSs and the 
principles they teach and, when required, request these 
related ITSs from the ITS Server to tutor the current 
student.  SHAI has already implemented the required 
Internet communication software and currently maintains 
the ITS Server.  Since the ITS authoring tool is still under 
development, ITSs have not as yet been developed to 
reside on this server.   
 Perhaps the major issue that will be faced is in the 
area of ontology.  Each ITS uses its own local language to 
describe the principles it teaches and which are illustrated 
and/or required in its scenarios.  The central ITS maintains 
a global hierarchy of the principles taught by each ITS 
using a global ontology and maintains a table which 
translates the names of the principles in each local ITS’s 
ontology to the names of the principles in the global 
ontology.  It remains to be seen if this relatively simple 
scheme will be adequate, whether different instructors not 
in communication with each other can cooperate through 



it, and how much human intervention may be required to 
“clean up” the global hierarchy which necessarily results 
from entries made from disparate fields and instructors.  
The initial assumption is that all ITSs are authored with 
the same Internet ITS authoring tool, but this constraint 
can be relaxed later.  All that is really required is that each 
ITS can describe what it teaches in terms of a (possibly 
flat) principle hierarchy, that these can be linked to 
principles in the global hierarchy that is maintained by the 
ITS Server, and that the ITS can describe how and when it 
should be initiated. 

ITS Authoring Tool 
There are six kinds of knowledge that the must be entered 
by the domain and/or instructional expert to create an ITS 
for a specific domain. These are the case base of scenarios 
to be used as examples and exercises, the hierarchy of 
principles referenced from those scenarios, multi-media 
descriptions which explain each principle, knowledge used 
to asses the correctness of student actions, knowledge used 
to assess a student’s mastery of a principle given the 
history of his performance in relation to that principle, and 
pedagogical knowledge.  Methods to enter the scenarios 
tend to be very domain specific and closely tied to the 
simulation. For tactical scenarios, we typically employ 
graphical editors based on an electronic map and 
intelligent tactical knowledge entry techniques not 
particularly to ITS concerns.  The principle hierarchy is 
entered through a simple tree-based graphical editor, with 
opportunities to browse the global principle hierarchy and 
make desired connections between nodes in the local 
hierarchy and nodes in the global one.  The authors can 
also add (but not change) nodes in the global hierarchy.  
The multi-media descriptions of principles are entered 
using commercial multi-media authoring tools, such as 
Macromedia Director.  The different ways to represent the 
knowledge to determine student action correctness was 
discussed in a previous section.  While the means of entry 
tends to be tied to the type of domain, we have found that 
finite state machines are often useful.  In the following 
paragraphs we discuss the capabilities for entering mastery 
assessment and pedagogical knowledge. 
 Representation and entry of the knowledge to 
assess principle mastery, given a history of actions related 
to it, is one of the simplest aspects of the authoring tool.  
The author specifies and names the levels of mastery.  For 
example, those might be novice, intermediate, and expert.  
For any principle in the hierarchy, he then defines the 
conditions that must be met to attain each level of mastery.  
These conditions typically define the percentage of correct 
usage of a principle from the last N actions using the 
principle in the last M scenarios in a specified time period. 
The required parameters are simply entered using a fill-in-

the-blank format.  Which principles the mastery level 
applies to is determined by which principle node the 
author selected in the principle hierarchy editor.  The 
mastery assessment definitions defined at a higher level in 
the hierarchy are inherited by all of its subprinciples unless 
over-ridden with a more local definition. 
 More complicated is the pedagogical knowledge.  
A somewhat simplified description follows.  The authoring 
tool allows different instructional methods to be defined 
for different types of students (based on background and 
principle mastery) and different regions of the principle 
hierarchy. Aspects of an instructional method include 
degree of instructional support; degree of student control; 
how much instructional material to present; what kinds of 
examples to show, and how many; what kinds of exercises 
to present, and how many; type and timing of debriefing; 
remediation, and exercise selection. 
 Perhaps the greatest challenge in designing the 
functionality and capabilities of the ITS authoring tool is 
maintaining the proper balance between flexibility/power 
and usability.  By designing a lot of flexibility in the 
instructional method specification, many inputs are 
required. Our design philosophy is based on the 
assumption that domain knowledge experts (a.k.a. Subject 
Matter Experts) are more readily available than 
pedagogical experts and that pedagogical knowledge can 
be generalized over domains.  We therefore have made 
pedagogical knowledge specification easy by having the 
authoring tool intelligently select default specifications 
that an author can choose to over-ride. We are developing 
a case base of instructional techniques so that when some 
preliminary information about the domain and types of 
students is entered, the system selects the most appropriate 
default instructional techniques for each type of student 
and principle.  A Subject Matter Expert is able to generate 
an ITS by just specifying domain-specific knowledge 
(principles, scenarios, pre-tests/post-tests scenarios), and 
using default specifications for pedagogical knowledge.  
 A preliminary version of the authoring tool which 
allows input of the various types of domain-independent 
knowledge required for the ITS, especially the pedagogical 
knowledge, now exists.  We will soon have a version 
which uses this knowledge to create an ITS.  We would be 
very interested in getting feedback from other ITS 
developers as to the default choices we have made, since 
we are still early enough in the project to incorporate 
feedback. 

Current and Future Work 

We have applied the case-based ITS approach in a number 
of domains.  We have developed an operational system for 
the US Navy’s Surface Warfare Officer’s School (SWOS), 
which they are currently using.  We have developed 



prototype case-based ITSs for tutoring NASA astronauts 
in experiment procedures and the science which underlies 
them, for training AWACS Weapons Directors controlling 
Air battles, and for training sonar technicians to find 
submarine signatures in sonar images. These prototypes 
monitor student actions in scenarios, derive a model of the 
student’s knowledge, select the most appropriate examples 
for instruction and exercises for testing, and select the 
topics that address the areas that the student doesn’t 
understand.  They also provide a facility for the student to 
browse those topics himself. 
 We are now developing full-scale ITSs for each 
of these three areas.  In each case, the domain experts and 
instructors agreed completely with the case-based 
approach to instruction and with our ITS designs and 
prototype implementations in particular.  In 1999, we will 
get more quantitative results as the full-scale ITSs are 
used.  We are also developing an ITS authoring tool which 
attempts to unify these diverse domains.  We will then be 
able to gauge the degree to which instructors can create 
ITSs, without programming or knowledge engineering 
assistance. 
 We have implemented the software to pass the 
needed information from ITS to ITS across the Internet, as 
well as to a central repository.  We currently are 
maintaining an Internet ITS Server, accessible from our 
web page, http://www.shai.com.  In 1999, we will begin to 
field distributed, cooperative ITSs, developed using the 
ITS Authoring tool currently under development. 
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