

SHUTDOWNS • TURNAROUNDS • OUTAGES

Intelligent Resource Scheduling for Reduced Turnaround Durations

Rob Richards, Ph.D.

Stottler Henke Associates, Inc.

Background & Perspective

Stottler Henke

- Artificial Intelligence Research & Development
 - Software Company
- Video: Project Management Experience

Resources and Critical Path (Resource Loaded)

- Large organizations developing and building complex systems rely on schedules and project management.
- Many CPPM projects are resource constrained (in reality, even if not modeled that way)
- Resource constraints (e.g., labor, space, equipment) greatly complicates the scheduling problem.
 - Hence a 'reason' to ignore

Where in the PM Space?

Project Management

```
— ...
```

- Critical Path (Resource Constrained)

```
• ...
```

Scheduling / Level Resources

```
\leftarrow \leftarrow
```

• ...

— ...

Planning Model

Scheduling Background / Comparisons

- Resource-Constrained Scheduling is NP-Complete, takes exponential time for optimal solution
 - I.e., it is a hard problem
 - Approximate methods are needed
- Most automatic scheduling systems use simple one-pass algorithms
- Standard constraint-based approaches are far less computationally efficient (Aurora takes advantage of structure of scheduling problems and heuristics)

Why Important? / Motivation

 So much work is put into developing project plan before hitting the schedule / Level Resources ... button

Days, Weeks, Months

- What if your resulting schedule is
 10% longer than it needs to be because of the scheduling engine?
- Would you care?

How about 25+% longer?

Motivation: Visual

- Following figure shows.
 - Critical Path
 - Resource Constrained Critical Path (theoretically correct)
- The goal is the shortest correct schedule

Scheduling Engine Comparison

Construction Examples

(Kastor & Sirakoulis, 2009)

Product	1st Example		2 nd Example	
	Duration	Deviation from CPM (%)	Duration	Deviation from CPM (%)
Primavera P6	709	52.8	308	29.41
MS Project	744	60.34	314	31.93
Open Workbench	863	85.99	832	249.58

Different Resource-Leveling Techniques

Deviation from Critical Path Duration

PROJECT	180.00%		
DURATION	160.00%		/
	140.00%		
	120.00%		
	100.00%		
	80.00%		
	60.00%		
	40.00%		
	20.00%		
	0.00%		
		RANK	

Benefits of Sophisticated Underlying Scheduler

- Results in a better initial schedule
- Execution: Schedule is more flexible and better able to accommodate change.
 - Schedule is "self-aware" of what tasks can most easily be moved. I.e., tasks store information about what placed it where it is placed.
 - Quickly reschedule as if resources on late task are not available until after its estimated end time.

Maybe Only for 'Big' Problems?

- Let's look at a toy problem ...
- 'Simple' problem with only 7 real tasks and 2 milestones.

'Simple' Network details

- Number superscript of circle is duration in days
- Number subscript of circle is resources needed
- There is only 1 type of resource

Critical Path of Network

- Solution when infinite resources available
 - Find longest path = 1 + 1 + 5 = 7
- So Critical Path is 7 days

Gantt Chart of Critical Path

Note: Sat/Sun are not workdays

Set Resource Pool to 5

 Only one type of resource to make the problem 'simple'

Gantt Chart Showing the Critical Path & Histogram

- Note: now some resources are overloaded
- Resource level to solve over allocation

Resource-Leveled in MS Project = 9 days

	0	Task Name	Duration	Start	Finish	Predecessors	Resource Names
1	4	ТО	0 hrs	Sat 11/1/08 12:00 AM	Sat 11/1/08 12:00 AM		
2	9	T1	8 hrs	Mon 11/3/08 8:00 AM	Mon 11/3/08 5:00 PM	1	A
3	9	T2	16 hrs	Fri 11/7/08 8:00 AM	Mon 11/10/08 5:00 PM	1	A[200%]
4	(2)	T3	32 hrs	Mon 11/3/08 8:00 AM	Thu 11/6/08 5:00 PM	1	A[200%]
5	4	T4	24 hrs	Mon 11/3/08 8:00 AM	Wed 11/5/08 5:00 PM	1	A[200%]
6	(2)	T5	8 hrs	Thu 11/6/08 8:00 AM	Thu 11/6/08 5:00 PM	2	A[200%]
7	(2)	T6	40 hrs	Fri 11/7/08 8:00 AM	Thu 11/13/08 5:00 PM	6	A
8	4	T7	24 hrs	Fri 11/7/08 8:00 AM	Tue 11/11/08 5:00 PM	5	A[200%]
9	Q	T8	0 hrs	Thu 11/13/08 5:00 PM	Thu 11/13/08 5:00 PM	7,8,3,4	

Simple Enough, Right?

Another view of the solution

But there is a better solution ... P6 Model: Resource Leveled = 8 days

Simple?

1 resource5 total units

End of Story... Not quite

- There is an even better solution
- 7 days
- So this 'simple' problem could not even be solved well by the world's 'premier' project management tools.
- Can you solve this 'simple' problem in 7 days?

Constraints Add Complexity

- Technical constraints (E.g., F-S, F-F, S-F, lags)
- Resource constraints
 - Labor constraints
 - Equipment, Tools (e.g., cranes)
- Usage constraints e.g., tool can only be used for so many hours continuously &/or during a day.
- Spatial constraints e.g.,
 - job requires a certain location or type of space;
 - two elements should (or should not) be next to each other
- Ergonomic constraints individual limitations on work conditions

Visualizing More Complex Situations

- No good methods shown to date
- Closest way is by similar problems
 - E.g., Tetris game, Tetris cube

Tetris

- Shapes similar to resource profile of individual tasks
- Holes when playing Tetris represent resource allocation inefficiencies.
 - E.g., black regions in figure to the right
- Try www.FreeTretris.org for yourself.

Tetris Cube

- More realistic to scheduling multiple types of resources per task is the Tetris Cube
- If not pieced together properly then will not fit in box.
- Video

Refinery Turnaround Leveraging Intelligent Scheduling Technology

sto2010

Turnaround Project Network 2,500+ Tasks

Results: 2,500+ Turnaround

Primavera P6

67.125 days

Performed by 3rd party

Aurora

56.27 days

- Primavera P6 19.3% longer than Aurora
- Critical Path is 46 days
 - P6 is 21.125 days longer than CP
 - Aurora is 10.27 days longer than CP
 - So % diff over CP is > 100%

Long-Term Refinery-Related Upgrade

MS Project 2007 = 1,627 days

Primavera P6 = 1,528 days

Primavera P3 = 1,258 days

Intelligent scheduling (Aurora) = 1,240 days

Results: 300 Task Example

MS Project 2003 145.6 days

MS Project 2007 145.6 days

Primavera P6115 days

Performed by 3rd party

Deltek Open Plan
 110 days

Aurora 102.5 days

Results

- Multiple sources reveal the effect of the Scheduling Engine
- For larger projects (>1,000): Aurora has been able to find project durations SIGNIFICANTLY shorter than other software for the same data set.
- Much of the potential improvement offered by modeling resources is being squandered.
- Resource leveled schedules are sub-optimal

Planning & Execution

- Initial Schedule benefits
- Execution benefits even MORE
 - If scheduler is inefficient, every delay will be magnified because re-allocation of resources will be deficient

Benefits of Sophisticated Underlying Scheduler

- Results in a better initial schedule
- Execution: Schedule is more flexible and better able to accommodate change.
 - Schedule is "self-aware" of what tasks can most easily be moved. I.e., tasks store information about what placed it where it is placed.

Analogy: Chess

- Chess mathematically is similar to resource loaded scheduling.
 - Easy: Create basic rules to play
 - Hard: Win against other intelligent players
- Resource Leveling in most software is analogous to 'Easy' chess solution
- Each move analogous to execution mode update, challenge continues throughout game/ plan

Take Aways

- Scheduling engine is critical
- Paying up to 100% penalty due to the scheduling engine
- Changing to an improved scheduling engine is probably the greatest potential improvement available to your project
 - Just press a different button
- Use more than 1 scheduling engine

SHUTDOWNS • TURNAROUNDS • OUTAGES

StC 2010

Best Management Practices

Rob Richards, Ph.D.

Stottler Henke Associates, Inc. richards@stottlerhenke.com

