

A Schedule Optimization Tool for
Destructive and Non-Destructive Vehicle Tests

Jeremy Ludwig, Annaka Kalton, and
Robert Richards

Stottler Henke Associates, Inc.
San Mateo, California

{ludwig, kalton, richards} @ stottlerhenke.com

Brian Bautsch, Craig Markusic, and
J. Schumacher

Honda R&D Americas, Inc.
Raymond, OH

{ CMarkusic, Bbautsch, JSchumacher } @ oh.hra.com

Abstract
Whenever an auto manufacturer refreshes an existing car or
truck model or builds a new one, the model will undergo
hundreds if not thousands of tests before the factory line and
tooling is finished and vehicle production beings. These
tests are generally carried out on expensive, custom-made
vehicles because the new factory lines for the model do not
exist yet. The work presented in this paper describes how an
existing intelligent scheduling software framework was
modified to include domain-specific heuristics used in the
vehicle test planning process. The result of this work is a
prototype scheduling tool that optimizes the overall given
test schedule in order to complete the work in a given time
window while minimizing the total number of vehicles
required for the test schedule. Initial results are presented
that show a reduction in required test vehicles compared to
manual scheduling of the same tasks as well as increased
capability to ask “what-if” questions to further improve the
schedule.

 Introduction
Vehicle testing is an essential part of building new cars and
trucks. Whether an auto manufacturer refreshes an existing
model or builds a new one, the model will undergo
hundreds if not thousands of tests. Some tests are exciting,
such as rolling a car over at speed and measuring the
impact on the crash-test dummies. Other tests are not quite
as sensational but still important, like testing the heating
and air conditioning system.
 What these tests have in common is that they are
generally carried out on custom-made vehicles because the
new factory lines for the model do not exist yet. These
custom-made vehicles each cost as much as an ultra-luxury
Bentley or Lamborghini, which results in pressure to
reduce the number of vehicles. There are two additional

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complications with the test vehicles. First, the custom-
made vehicles take time to build and are not all available at
once but become available throughout the testing process
based on the build pitch of the test vehicles. An example of
this is one new test vehicle being made available each
weekday. Second, there are many particular types of a
model and each test might require a particular type or any
of a set of types (e.g., any all-wheel-drive vehicle). There
may be dozens of types of a particular vehicle model to
choose from, varying by frame, market, drivetrain, and
trim.
 At the same time, market forces dictate when new or
refreshed models must be released. The result is an equal
pressure to complete testing by certain dates so model
production can begin.
 Finally, testing personnel and facilities are limited
resources that work with several models simultaneously.
For example, it would be desirable to schedule all of the
crash tests at the very end of the project so other tests could
be carried out on those vehicles first. However there aren’t
enough crash labs or personnel to support this so the
crashes must be staggered throughout the project.
 The work presented in this paper describes how Aurora,
an existing intelligent scheduling software framework, was
modified to include domain-specific algorithms and
heuristics used in the vehicle test planning process. The
framework combines graph analysis techniques with
heuristic scheduling techniques to quickly produce an
effective schedule based on a defined set of activities,
precedence, and resource requirements. These heuristics
are tuned on a domain-specific basis to insure a high-
quality schedule for a given domain. The resulting domain-
specific scheduler is named Hotshot.
 The result of this work is a prototype system that
optimizes the overall given test schedule in order to
complete the work in a given time window. The schedule
optimization process includes determining which vehicle

types are built and the order in which they are built to
minimize the total number of vehicles required for the
entire test schedule. Initial results are presented that show a
reduction in required test vehicles compared to manual
scheduling of the same tasks as well as increased capability
to ask “what-if” questions to further improve the schedule.
 In the remainder of this paper we first discuss related
work. Following this we describe the Aurora scheduling
framework and the changes made to create the domain-
specific Hotshot scheduling tool. The methods and results
sections contain the details of our comparison between an
existing schedule created manually and one created with
the Hotshot tool. Finally, we present future work in the
conclusion.

Background and Related Work
Despite the invaluable role played by scheduling software
in a number of industries, the cost and expertise involved
in creating a system suited to each new area has restricted
the adoption of such tools. Unfortunately, although there
are a variety of high-quality customized scheduling
systems available, off-the-shelf systems rarely fulfill the
scheduling needs of any one domain. This is, in large part,
because domain knowledge is crucial to the efficient and
effective solution of scheduling problems in general.
 The result of this is that the industries/domains that
realize the advantages afforded by intelligent scheduling
systems are either those that can afford a full custom
solution, or those that fall within the narrow commercial
off-the-shelf domain coverage (e.g., for project planning).
 To make scheduling software attainable by a broader
audience, it must be possible to create new scheduling
systems quickly and easily. What is needed is a framework
that takes advantage of the large degree of commonality
among the scheduling processes required by different
domains, while still successfully expressing their
significant differences, i.e., with parts of the scheduling
process broken out into discrete components that can easily
be replaced and interchanged for new domains. Framinan
and Ruiz (2010) present a design for general scheduling
framework for manufacturing.
 Aurora is one example of an implemented scheduling
framework, which distills the various operations involved
in most scheduling problems into reconfigurable modules
that can be exchanged, substituted, adapted, and extended
to accommodate new domains (Kalton & Richards, 2008).
The OZONE Scheduling Framework (Smith et al., 1996) is
another example of a system that provides the basis of a
scheduling solution through a hierarchical model of
components to be extended and evolved by end-
developers. Becker (1998) describes the validation of the
OZONE concept through its application to a diverse set of

real-world problems, such as transportation logistics and
resource-constrained project scheduling.
 The artificial intelligence and operations research
academic communities continue to investigate and report
the benefits of heuristics as part of improving scheduling
results (e.g., Kolischa & Hartmannb, 2006). Aurora, to
more quickly find a good schedule, leverages both domain-
independent and domain-dependent heuristics in addition
to leveraging the hierarchical model of components.

Scheduling Framework
Aurora was designed to be a highly flexible and easily
customizable scheduling system. It is composed of a
number of components that can be plugged in and matched
to gain varied results. The scheduling system permits
arbitrary flexibility by allowing a developer to specify
what components to use for different parts of
scheduling. Aurora has been successfully applied in a
number of domains.

While the general scheduling process used by Aurora is
applicable to most scheduling domains, by plugging in
different versions of the components, the developer can
produce widely disparate scheduling engines. The base
scheduling framework is a foundation on which a number
of different systems can be constructed. The steps in the
scheduling process are described in detail below. All
configurable elements are shown in bold. Elements that
were modified for the test vehicle domain will be discussed
further in later sections.

Scheduling Process
Schedule Initialization
1. Aurora undoes any previous post-processing (to get back

to the “true” schedule result state), and applies the
Preprocessor to the schedule information.

2. Aurora uses the Queue Initializer to set up the queue
that will be used to run the scheduling loop. A
standard Queue Initializer puts some or all of the
schedulable elements—activities, flows, and resources
—onto the queue.

3. The queue uses the Prioritizer to determine the priority
of each element. Depending on the execution strategy,
these priorities may be used to periodically sort the
queue, or to schedule the element with the highest
priority at each stage. Note that some priorities may
change in the course of scheduling.

4. The Schedule Coordinator triggers the scheduling of the
elements on the queue by starting the Scheduling
Loop. In many cases, a more complex element will
recursively set up and execute its own queue, allowing
greater control over the scheduling process.

Scheduling loop
1. A schedulable element (task, project, or resource) asks

the Scheduler to schedule it.
2. The Scheduler calls constraint propagation on the

schedulable so as to be sure that all of its requirements
and restrictions are up to date.

3. The Scheduler looks at the element, considers any
Scheduling Method that is associated with it (e.g.,
Forward, Backward). A Scheduling Method
determines how the system goes about trying to
schedule an element. The Scheduler also selects which
Quality Criterion to associate with the selected
scheduling method; the Quality Criterion determines
what makes an assignment “good.”

4. The Scheduler calls the Schedule Method on the
schedulable. The process depends a great deal on the
Schedule Method, but the result is that the schedulable
element is assigned to a time window and has
resources selected to satisfy any resource
requirements. It also returns a list of the conflicts
resulting from the given assignment.

5. The Scheduler calls constraint propagation on the
schedulable (again) in order to update all of the
neighbors so that they are appropriately restricted by
the newly scheduled element. This process may result
in additional conflicts; if so, these are added to the list
of conflicts from scheduling.

6. The Scheduler adds the conflicts to the Conflict
Manager, and asks the manager to attempt to resolve
those conflicts.

Schedule Finalization
1. When the queue is empty, Aurora goes through a final

conflict management step. The conflict management
that occurs during scheduling is primarily local
conflict management (it looks at ways of fixing the
current conflict, but does not consider the broader
context). In this step Aurora applies the same Conflict
Manager, but this time it tries to solve all remaining
conflicts, and the attempts may have more far-reaching
consequences (e.g., instead of shuffling 2–3 elements,
it may try to shuffle 6–7).

2. Aurora calls the Postprocessor on the schedule, so that
any additional analysis may be done before Aurora
returns the schedule results.

3. Aurora sends the schedule results to the GUI for display.

Domain-Specific Customization
Two different types of modifications were made to the
Aurora framework to create the Hotshot tool. First, the user
interface front end was modified to import the testing
model, display and edit domain-specific properties, and to
perform the optimization to minimize the number of

required vehicles. Second, components in the scheduling
back end were updated specifically for this domain.

User Interface Customization
There are five features added to the general scheduling
user interface that are specific to the vehicle test domain:
import an Excel model of the testing problem, view and
edit build pitch, view and edit vehicles and build order,
minimize the number of vehicles required, and export the
schedule to a client-specific format. The first four of the
features will be described in greater detail.
 The starting point of the Aurora customization for the
vehicle testing domain is importing the testing tasks,
resources (vehicles, personnel, facilities), resource sets
(groups of vehicles), resource requirements, constraints
(temporal, sequence, and resource), build pitch
information, and calendars from a set of Excel
spreadsheets. These Excel spreadsheets represent a model
of the overall testing problem. Once imported, the general
user interface supports graphically viewing and editing
most of the model elements such as tasks, resource
requirements, resources, resource sets, constraints, and
calendars. Changes were made to support task properties
specific to this domain. For example, tasks that render the
vehicle useless for future testing are marked as destructive
and tasks that must be performed on a vehicle before any
other tests are marked as exclusive.
 A Build Pitch dialog was added for viewing and editing
the general build pitch per week (number of vehicles that
can be built) as well as a maximum build pitch for each
vehicle type. For example, 10 test vehicles per week can be
built, but only 5 all-wheel-drive can be built in a week.
 A Manage Vehicles dialog specifically for managing the
vehicles was also added. This dialog is used to manually
change the vehicle build order as well as to manually
create and remove vehicles. Vehicles with a flexible start
date will be assigned a build date based on the assigned
build order. Build dates are assigned based on the build
order, moving from 1 to n and selecting the first available
date that meets two criteria: number of vehicles/week is
not exceeded and vehicle type per week is not exceeded.
The build order will be assigned automatically during the
optimization process.
 The Optimization Dashboard is used to minimize the
number of vehicles required to schedule the testing tasks
(Figure 1). The upper left summarizes the current state of
the schedule, showing the number of vehicles required, the
number of destructive and exclusive tasks, and the
utilization of vehicles in the testing schedule. The upper
right shows the current status of optimization, which will
change once the Start button is pressed. This portion of the
dialog also provides an estimate of how long the remaining
optimization will take. The central portion of the dialog
contains the four parts of the optimization process. Check

boxes allow advanced users to selectively turn off part of
the optimization process, but these should generally all be
turned on in normal use. Buttons for starting and
controlling the optimization are found along the bottom of
the dialog.

 There are four steps in the optimization process:
1. Set Backward Schedule. Mark all tasks to be backward

scheduled. This means that the schedule will be
created from the end of the project to the front, with all
tasks scheduling as close to their late end dates as
possible.

2. Date Optimizer. Once the tasks are backward
scheduled, look at the vehicles and assign build order
based on how early tasks are assigned to vehicles. That
is, if the first task assigned to Vehicle A starts on Jan
15 and the first task assigned to Vehicle B starts on
Jan 18, then A will come before B in the build order.
The heuristic is that vehicles that are needed earlier
should be built earlier.

3. Meta Disabler Optimizer. For each non-exclusive
vehicle, temporarily disable the vehicle and try to
create a schedule without the vehicle. If this succeeds,
permanently delete the vehicle. If this fails, restore the
vehicle and continue. Only non-exclusive vehicles are
tested because every exclusive vehicle is required by
one task. Vehicles are checked for disabling by
starting with the vehicles with the greatest available
time and working towards those with the least
available time.

4. Set Forward Schedule. Return each task to forward
schedule mode, where all tasks try to schedule as close
to the project start date as possible. However, it will
still be the case that (i) exclusive tasks will remain the
first tasks assigned to an exclusive vehicle and (ii)
destructive tasks will be the last tasks assigned to an
exclusive vehicle.

At the end of each scheduling run, the vehicle utilization is
calculated. This is the sum of the duration of all the tasks
assigned to a vehicle divided by the total days available for
each vehicle from creation to project end.

Scheduling Component Customization
The scheduling component customization focused on three
central areas: scheduling direction maintenance, special
handling for vehicle testing’s unusual requirements, and
more standard heuristic tailoring for the domain. Each area
is discussed in a section below along with the impact on
the scheduling plugins. Impacted plugins are noted in
italics.
 Scheduling Direction Management

The dominant scheduling direction is backward
scheduling for most of the optimization cycle, and forward
scheduling at the end of the optimization cycle. This
presents a challenge because if a conflict-free schedule can
be found for one direction, then a conflict-free schedule
should also be found for the other direction. This is
challenging given the NP-complete nature of the
scheduling problem. Just because there is a solution, there
is no guarantee that the system can find the solution
coming at the problem from a different direction.

This would be less problematic for a less constrained
domain. However, between the domain-specific
complications (discussed below), and the fact that the
optimization process is iteratively reducing the solution
space, without supplemental logic the system would
frequently encounter conflicts when forward scheduling
even though there were none when backward scheduling.

The solution in this case is to always backward schedule
first, given that that is the dominant scheduling direction
for optimization. Once the system has backward scheduled
successfully, it then iteratively forward schedules in date-
assigned order such that it can derive a conflict-free
forward schedule from the backward schedule. This may
not produce as tight a forward schedule as is theoretically
possible, but provides a consistency guarantee that would
not otherwise be possible.

This logic is handled by alterations to two plugins:
Preprocessor — All tasks (except exclusive tasks,

discussed below) are marked to backward schedule,
regardless of the current dominant schedule direction. The
schedule direction requested by the front end is cached so
that the postprocessor can restore it.

Postprocessor — This attempts to move tasks earlier
within the limits of their temporal constraints and vehicle
availability dates, starting with earlier tasks and iterating
through the schedule in date order. Unrelated tasks remain
scheduled while the target tasks and their tightly
constrained neighbors are moved; this is done to insure that
a conflict-free schedule is maintained.

Figure 1. Optimization Dashboard.

Vehicle Testing Special Support
The vehicle testing scheduling had a few unusual aspects

that required special handling in the scheduling
framework: exclusive tasks, destructive tasks, and series of
inter-constrained tasks.

Exclusive tasks represent tests that must be the first
kind of test on a given vehicle. This means that they must
be scheduled before anything else on a given vehicle, and
nothing can be allowed to subsequently slip in before the
exclusive task. Each exclusive task had a vehicle generated
for it in the import phase, so the simplest way of handling
this case is to schedule the exclusive tasks first in the
scheduling process, and initially schedule them as early as
possible so that nothing can schedule earlier in time.

Three plugins work together to accomplish this.
Preprocessor — Regardless of dominant scheduling

direction, exclusive tasks must be set to always schedule
forwards in the initial scheduling sweep.

Prioritizer — Exclusive tasks must always schedule first
in the process, so that no other task will have the
opportunity to schedule at the beginning of the target
vehicle’s window of availability.

Postprocessor — The postprocessor is responsible for
finalizing the schedule direction declared by the front end
(discussed above). When the dominant schedule direction
is backward schedule, this step reschedules exclusive tasks
backward, snapping them in just before the subsequent
tests on the vehicle in question.

Destructive tasks represent tests that destroy the
vehicle, so no subsequent tests may be scheduled later than
the destructive task. Unlike exclusive tasks, destructive
tasks do not have devoted vehicles. This has the advantage
of allowing the system to dynamically determine which
vehicle is most appropriate for a destructive task, but it
also complicates scheduling support.

The basic approach is similar to that for exclusive tasks:
schedule the destructive tasks backward early in the
process in order to avoid conflicts. However, in order to
prevent other tasks from sneaking onto the vehicle after the
destructive task, the destructive task needs an additional
placeholder. This placeholder locks the vehicle down from
the end of the destructive task to the end of the test phase,
so that nothing else can schedule to the vehicle.

Two plugins work together to accomplish this.
Prioritizer — Destructive tasks must always schedule

just after exclusive tasks in the process, so that extensive
conflict resolution is not necessary to clear space for the
destructive tasks.

Scheduler — The scheduler has two pieces of domain-
specific functionality relating to destructive tasks. When
the destructive task is performing an analysis of which
vehicle to select, the default logic would simply check the
destructive task’s desired window to make sure that the
vehicle was available. In this case, the scheduler performs

a secondary check to make sure that nothing is already
scheduled to the vehicle later than the desired allocation
window. Once the destructive task is scheduled, the
scheduler schedules the placeholder to fill the time after
the destructive task.

Vehicle-constrained test series are series of tests that
need to occur on the same vehicle. That is, once the first
test selects from among the set of viable vehicles, all
following tests in the series must select the same vehicle.
This is a concept that occurs in other domains, especially
manufacturing domains, but the vehicle-testing domain
included this structural feature to an unusual degree.

The reason this complication made the scheduling more
difficult is that usually each task is handled individually,
checking resource availability individually. In a case like
this, where a large number of tasks that are temporally
constrained need the same resource, it is easy for the first
task scheduled to select a resource that is unavailable for
subsequent tasks. To prevent this from happening—or to
prevent a poor resource choice from causing significant
conflict resolution problems—two strategies are used,
supported by two plugins:

Preprocessor — When the tasks in question are exact-
constrained (one must start as soon as the other finishes), a
“follow-on” property may be used for easy look ahead. The
preprocessor calculates what the “follow-on” duration
should be for a given resource requirement, based on
which requirement(s) have a constraint to use the same
resource as another task. The preprocessor also marks the
resource-constrained series (exact-constrained or
otherwise) for special handling.

Scheduler — A special schedule method isolates the
backtracking and search logic necessary to handle a series
of tasks that are resource constrained where some are not
exact constrained, since in that case the “follow-on”-based
look ahead is insufficient. This method schedules
everything in the series in order, and maintains reasoning
about which resources have proven problematic, in order to
reduce the conflict resolution and search time.

Heuristic Tuning
Any new domain requires tuning of the heuristics that

dictate scheduling order and resource selection. The most
notable of these for vehicle testing was the heuristic and
supporting maintenance relating to vehicle selection. The
various tests are highly variable in terms of their degree of
vehicle flexibility. Some tests can be run on dozens of
vehicles; others on one or two.

In order to insure that vehicles are selected appropriately
based on vehicle availability and remaining tests, a vehicle
load heuristic was added. This heuristic influenced both
scheduling order (preferring to schedule tests with very
limited vehicle options earlier in the process), and resource
selection (preferring to schedule tests away from vehicles
that had a large block of highly constrained tests that had

not yet been scheduled). Keeping the vehicle load
information up to date and applying it effectively required
adjustments to several plugins:

Preprocessor — Initialized vehicle load information
based on all resource requirements and their options for all
test tasks.

Prioritizer — Apply load information to detect cases
where the choices for a test had narrowed dangerously,
forcing a test to force-schedule.

Scheduler Quality Criteria — Apply load information to
try to schedule away from vehicle bottlenecks when
selecting vehicles.

Scheduler Post-Processing — Update load information
based on scheduled selections.

Methods
The starting point for the comparison between manual and
automated planning was a small test schedule that had
recently been created and carried out by the client.
Planners at the client test facility manually converted the
original schedule to the custom Aurora Excel model
format. To provide a rough description of the scope of the
scheduling model, it included 60 tasks. Of these tasks, 18
were destructive tasks and 1 was a destructive and
exclusive task. The sum of the duration of the tasks is 680
days to be carried out over the 55 days allocated to the
project.
 The manually created schedule only contained vehicle
resource constraints; it did not contain facility or personnel
resource constraints. Similarly, the Aurora model
contained vehicle resource constraints but not facility or
personnel constraints. The test schedule called for 25
vehicles to be built, where the initial Aurora model
contains 26 vehicles to be built. This overestimate on the
number of vehicles required was done purposely to test the
Aurora optimization process. The build pitch supplied to
Aurora was the build pitch used to create the schedule.
Given the build pitch and the number of vehicles, there
would be 1105 possible workdays in the schedule and the
initial vehicle utilization is 62%.
 The resulting model of the testing process was then
imported into Aurora and the optimization process run to
create a schedule that minimizes the number of vehicles
required to complete the test in the given timeframe. The
model was used repeatedly to test and refine the domain-
specific heuristics, aiming towards a known lower bound
that was calculated for the number of vehicles required.
The absolute lower bound of vehicles based on the task
definitions was 22 vehicles, based on 19 destructive tasks
and 3 tasks that require vehicle types not included in the
destructive vehicles.

Results
When the actual test schedule was carried out, 25 vehicles
were used to complete the tests and some of the tests went
beyond the project deadline. Initially, Aurora created a
schedule that required only 22 vehicles to complete the
tests in the same timeframe. The 12% reduction in vehicles
resulted in intense scrutiny of the scheduling model being
imported into Aurora and planners discovered several
errors such as missing constraints, too aggressive build
pitch, and destructive tests marked as non-destructive.
With the improved model of the actual schedule, Aurora
was able to complete the schedule using 23 vehicles — an
8% reduction. The model withstood additional scrutiny and
the resulting schedule equates to a measurable savings for
this small test schedule.

Being able to generate a schedule in under two minutes
as opposed to days of labor resulted in the side effect of
being able to generate numerous “what-if” scenarios.
Planners were able to quantify the effect of compressing or
extending the schedule in terms of how many cars would
be required. Planners also demonstrated the effects that
steeper and shallower build pitches have on the number of
cars required for a given set of tasks and project end date.
The ability to quickly examine these types of effects will
support planners in future test schedules in the task of
presenting options with various tradeoffs among
manufacturing resources, time, and number of vehicles
required.

Conclusion
This paper described a complex, real-world, scheduling
problem in automotive vehicle testing prototype
management. To address this problem, we added domain-
specific heuristics to a general intelligent scheduling
software framework to create the custom Hotshot
scheduling software. The schedule generated by Hotshot is
measured against a schedule completed using the current,
manual method. Hotshot was able to generate a schedule
with a significant reduction in the number of vehicles
required that still completed in the given timeframe.

 Ongoing work on this project is aimed at ensuring
Hotshot scales to work on larger test schedule problems
and takes into account all of the task constraints. Scaling
includes testing on larger models that require over 100
vehicles, creating test schedules with Hotshot while the
human planners are still working on creating the schedule
manually (to verify the heuristics work on the large model
and did not over fit the initial test model), and continuing
to improve the heuristics for minimizing the number of
required test vehicles. Additionally, Hotshot will begin to
utilize facility and personnel constraints when creating a
schedule to provide more realistic results.

References
Becker, M.A., 1998. “Reconfigurable Architectures for Mixed-
Initiative Planning and Scheduling,” PhD Thesis, Robotics
Institute and Graduate School of Industrial Administration,
Carnegie Mellon university, Pittsburgh, PA.
Framiñan, J.M., & R. Ruiz, 2010. Architecture of manufacturing
scheduling systems: Literature review and an integrated proposal.
European Journal of Operational Research 205(2): 237-246.
Kalton, Annaka, & R. Richards, 2008, Advanced Scheduling
Technology for Shorter Resource Constrained Project
Durations. AACE International’s 52nd Annual Meeting & ICEC’s
6th World Congress on Cost Engineering, Project Management
and Quantity Surveying. Toronto, Ontario, Canada. June 29 –
July 2 2008.
Kolischa, R. & S. Hartmannb, 2006, Experimental investigation
of heuristics for resource-constrained project scheduling: An
update. European Journal of Operational Research, Volume
174(1): 23–37.
Smith, S.F., O. Lassila & M. Becker. 1996. Configurable, Mixed-
Initiative Systems for Planning and Scheduling. In: Tate, A. (Ed.).
Advanced Planning Technology. Menlo Park, CA: AAAI Press.

