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Abstract 

Despite the invaluable role played by scheduling software in 
a number of domains, the cost and expertise involved in 
creating a system suited to each new area has restricted the 
adoption of such tools. To make scheduling software 
attainable by a broader audience, it must be possible to 
create new scheduling systems quickly and easily. What is 
needed is a framework which takes advantage of the large 
degree of commonality among the scheduling processes 
required by different domains, while still successfully 
expressing their significant differences. We briefly describe 
a framework which distills the various operations involved 
in most scheduling problems into reconfigurable modules 
which can be exchanged, substituted, adapted, and extended 
to accommodate new domains. We then discuss how this 
system was successfully applied to the large-scale 
production scheduling involved in airplane assembly. 

Introduction   

Planning and scheduling software has the potential to 
benefit a variety of domains and industries. Unfortunately, 
although there are a variety of high-quality customized 
scheduling systems available, off-the-shelf systems rarely 
fulfill the scheduling needs of any one domain. This is, in 
large part, because domain knowledge is crucial to taming 
the intractable nature of scheduling problems in general. 
 The result of this is that the main domains that can take 
advantage of scheduling systems are either those that can 
afford a full custom solution, or those that fall within the 
narrow commercial off-the-shelf domain coverage (e.g. for 
project planning). Even in the latter case, however, the 
solution is often a poor fit, because the modeling tools are 
often limited in their expressiveness, and the scheduling 
process itself is generic. 
 This problem is all the more frustrating because many 
scheduling systems share a variety of common 
functionality. We believe that the solution to this problem 
is to create a standard scheduling framework, with parts of 
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the scheduling process broken out into discrete 
components that can easily be replaced and interchanged 
for new domains. We have created such a framework in 
Aurora, a configurable scheduling engine, and successfully 
applied it to a number disparate domains, including orbiter 
preparation scheduling and missile intercept assignment. 
The domain discussed here - airplane assembly scheduling 
- has a large number of complex resource requirements, 
temporal constraints, and timing restrictions. 
 We will begin by giving an overview of the 
reconfigurable system and its components; we will then 
discuss how the system was applied to the problem of 
airplane assembly scheduling; finally, we will discuss our 
conclusions and possible future directions for this research. 

Reconfigurable Scheduling Framework 

Aurora was designed to be a highly flexible and easily 
customizable intelligent scheduling system. To achieve this 
goal, we designed it to have a number of  components that 
could be plugged in and matched to gain varied results. 
 The scheduling system permits arbitrary flexibility by 
allowing a developer to specify what code libraries to use 
for different parts of scheduling. Each of the pluggable 
components must extend the corresponding general base 
class that defines the entry-point methods. This allows the 
objects that are integral to Aurora to interact with them 
successfully. The libraries may make use of any of the 
Aurora objects (such as activities and resources) that pass 
through the interface. These objects provide support for 
additional attribute caching, permitting domains to make 
use of custom properties in the scheduling heuristics. 
 The primary pluggable components include a 
preprocessor; a scheduling queue prioritizer; the actual 
scheduler, which usually applies several scheduling 
methods; a conflict solution manager; and a postprocessor. 
See Figure 1 for a more detailed breakdown of 
configurable operations.  
 Some of the pluggable components are independent 
elements; others may depend on the existence of parallel 
schedulable components in other parts of the scheduling 
process.  



Airplane Assembly Scheduling Domain 

Extremely large-scale production scheduling, such as 
airplane assembly scheduling, is a challenging real-world 
scheduling problem that offers a number of interesting 
features and considerations, some of which are discussed 
below. We successfully reconfigured Aurora to satisfy 
these special requirements without violating the general 
scheduling solution framework; this customization is 
discussed in the following section.  

Extensive temporal constraints. The assembly plan for a 
single airplane may have over two thousand jobs, and over 
six thousand temporal constraints. Although the plane is 
assembled in several sections, forming several especially 
heavily constrained sub-networks, there are also a 
significant number of constraints among these sections. 
This would not be problematic except that they combine 
with extensive resource requirements to form an extremely 
heavily constrained problem definition. 

Extensive resource requirements. Almost every job in 
the assembly plan has at least one resource requirement; 
and many have more than twenty. The required resources 
often function at or near capacity. 

Variable resource capacities. The personnel resources 
and some equipment resources have a capacity that varies 
over time. This variability is modeled as a nested variance 
description: the patterned variability within a given time 
period (e.g. 35 mechanics for 8 hours, 20 mechanics for 8 
hours, and  7 mechanics for 8 hours; repeat); and different 

patterns across different time periods (e.g. manpower 
across shifts may be different in April than in March). 

Workspace consumption. Many of the resources 
constraining the schedule are in fact work zones, reflecting 
the fact that most tasks must be performed in a specific 
location, and only so many people can be at that location at 
a time. However, in the course of airplane assembly, most 
of these zones are effectively eliminated by jobs that install 
hardware which prevents subsequent access to the area. 
Such work zones are not true consumable resources; in 
most cases the resource’s client job does not diminish the 
resource’s capacity beyond that job’s duration. A zone 
might be required by 100 jobs, the last two of which 
eliminate it. 

Interacting calendars. Rather than having a single work 
calendar - either globally or at a job level - there are a 
number of calendars that must interact dynamically in the 
scheduling process, with the scheduler taking the 
intersection of all applicable calendars to find a correct 
result. An example of this would be a plane’s work 
calendar being combined with a job’s and multiple 
resource calendars to find the actual workable windows.  

Soft scheduling. Some jobs may be split into multiple jobs 
if it improves the schedule; other jobs may occur at the 
same time as certain compatible jobs, even though usually 
this would produce a conflict and invalid schedule. These 
soft scheduling attributes help produce a shorter schedule 
that is still workable and acceptable, but also add a degree 
of challenge to finding that schedule quickly. 

Analysis complexity. The scheduling problem itself is rich 
and complicated. However, it is not sufficient for the 
system to produce a feasible schedule; it must also produce 
a comprehensible schedule. The scheduling team is 
continually trying to improve the production plan’s 
formulation to gain a plan that can be scheduled more 
compactly. In order to do this, the scheduling team must 
not only be able to extract a feasible schedule from the 
system: they must also be able to look at the schedule and 
gain an understanding of why it scheduled the way it did, 
so that they can focus on those parts of the production plan 
that could result in schedule cycle improvement if 
streamlined.  

Airplane Assembly Scheduling Customization 

The greatest consideration in airplane assembly scheduling 
is the scale of the problem, and the tangle of inter-related 
constraints which make it extremely difficult to fix 
conflicts. These are the fundamental driving factors for this 
domain; other considerations add to the domain’s 
complexity, but in and of themselves do not make the 
scheduling difficult. Below we discuss how we addressed 
each of the airplane assembly scheduling considerations 
introduced above. Each section finishes with a cross-
reference indicating which stages in the scheduling process 
(see Figure 1 for references) had to be modified to 
accommodate the change. 
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Figure 1. Aurora’s reconfigurable scheduling system 

process breakdown. This shows a few of the configurable 

decision points, and will be used for scheduling stage 

cross-reference in the customization discussion. 



Extensive constraints. The resource requirements make 
conflicts likely, while the temporal constraints make it very 
difficult to successfully resolve these conflicts. Rather than 
attempting to fix these conflicts, we instead focused on 
conflict-free scheduling and the scheduling order that 
could result in such scheduling. By not trapping earlier 
activities into restricted windows by scheduling later 
activities first, we could avoid conflicts; subsequent work 
focused on prioritization heuristics which tended to result 
in shorter schedules. For example, scheduling jobs with a 
large number of down-stream dependencies (not only 
direct successors, but successors’ successors, etc.) tends to 
result in a schedule with a shorter cycle time. Adding 
resource requirement considerations to this analysis 
improves results even more.  
 Customizations focused on stage 1, for heuristic 
initialization; and stages 2 and 3.A, for queue prioritization 
and management. 

Variable resource capacities. The challenge with variable 
capacities lies in modeling them efficiently. In the 
scheduling process itself, the variable capacities are no 
different from having a number of activities already 
scheduled, occupying certain patterns of usage within a 
resource. We considered modeling the capacities in exactly 
that way - using “dummy” activities - but concluded that 
the number of objects required would be prohibitive. 
Instead, we apply a capacity pattern (made up of nested 
capacity routines) to the linked lists of time slots that 
express a resource’s availability through time. Because the 
resource knows what its capacity plan is, and it is easy to 
find the routine for a given time window, the plan can be 
applied on an as-needed basis, significantly improving 
overall performance by minimizing the number of resource 
time slots required. See Figure 2 for an example of a 
schedule using variable capacities.  
 Customizations focused on stage 3.B.iii, for incremental 
capacity plan application on an as-needed basis. 

Workspace consumption. Because most work-zone client 
jobs do not consume them (the work takes place and the 
person leaves, freeing the zone for another task), modeling 
the zones as true consumable resources did not give the 
desired flexibility. Nor did the application of temporal 
constraints from jobs to resources to dictate resource end 
time, because in some cases a job only consumed part of 
the zone. To accurately reflect the desired flexibility we 
used a new type of constraint - a consumption constraint - 
which would remove the associated quantity from the 
resource’s capacity once the job was scheduled. We also 
augmented the job prioritization to guarantee that all work 
making use of the zone would be complete before it was 
fully consumed, preventing unnecessary conflict 
resolution.  
 Customizations focused on stage 3.A, for zone-
availability priority maintenance; and stage 3.B.v, for 
consumption constraints propagation to eliminate the 
associated resource capacity. 

Interacting calendars. Intersecting calendars is not a 
fundamentally difficult problem; the challenge lies in the 

sheer number of elements involved. This difficulty was 
ameliorated by the fact that there are generally fewer than 
ten calendars in use overall; so rather than intersecting 
each job/plane/resource set combination, we could cache 
each calendar combination for later lookup and use. In 
most cases, one of two or three composite calendars was 
appropriate, with a few exception cases making use of a 
less standard composite. The compilation and cross-
referencing could then be done on an as-needed basis and 
cached for future reference; in general each such analysis 
only had to be done once for a given plan, unless the 
calendar definitions changed.  
 Customizations focused on stage 3.B.ii, for calendar 
retrieval and (if necessary) compilation. 

Soft scheduling. The primary challenge of the soft 
scheduling is the question of whether to apply it. Splitting 
a job into two pieces, for example, is certainly desirable if 
it buys you six hours in overall flow time. What if it buys 
you an hour? Half an hour? Ten minutes? Because it is not 
always worth the implicit cost necessary to take advantage 
of the soft scheduling options, we folded the analysis 
involved into the single-step post-processing (stage 3.B.v): 
methods called just after a given element is scheduled, 
before the next is scheduled. This allows the methods to 
alter the decisions made in the course of scheduling, but 
also take advantage of the knowledge gained to make more 
intelligent decisions.  
 Customizations focused on stage 3.B.v, for considering 
the utility of softening the schedule selections made in 
earlier 3.B stages. 

Analysis complexity. Providing transparency to complex 
scheduling decisions, especially in a schedule of such 
scale, is a great challenge. We focused on the more 
straightforward question of why a given element scheduled 
where it did: what temporal constraints impacted the 
possible time window and how; did resource availability 
affect the selected window; and if so, on what other job 

Figure 2. The histogram display in Aurora, showing 

details for a specific time slice and reflecting a variable 

per-shift capacity for the mechanics. 



was this job waiting. Based on this information the system 
produces a layered explanation reflecting the nested 
possible time windows: what elements restricted a given 
window, and why. It also maintains direct links to the 
elements that determined the final decisions, so that from 
the GUI the user can easily navigate along a string of inter-
related elements to better understand the root cause of a 
cascading series of scheduling decisions. The GUI also 
provides a number of drill-down displays and reports, 
providing a greater degree of transparency to the actual 
scheduling results. This information allows a savvy user to 
gain an understanding of both the broad results and 
specific decisions, providing the tools he needs to 
manipulate the assembly plan definition to improve the 
overall schedule cycle. See Figure 2 for an example of a 
high-level display with drill-down exploration support.  
 Customization focused on stages 3.B.i, 3.B.iv, and 
3.B.v, for caching information about constraint 
propagation impact and actual scheduling decisions. 

Related Work 

Previous research considering the design and 
implementation of reconfigurable scheduling systems has 
built on concepts initially explored in the area of reusable 
domain analysis [Ferré and Vegas 99, Arango 94] in order 
to take advantage the similarities between scheduling 
problems. Most notably, Carnegie Mellon’s Intelligent 
Coordination and Logistics Laboratory has developed the 
OZONE (O3, or, Object Oriented Opis) scheduling 
framework [Smith et al 96 and 97]. OZONE, like Aurora, 
provides the basis of scheduling solution through a 
hierarchical model of components to be extended and 
evolved by end-developers. [Becker 98] describes the 
validation of the OZONE concept through its application to 
diverse set of real-world problems, such as transportation 
logistics and resource constrained project scheduling. 
 A less flexible but more easily configured system was 
explored in relation to genetic algorithms [Montana 01]. 
This approach has the advantage of defining schedule 
properties using a straightforward set of meta data, with 
much of the more refined optimization configuration being 
performed automatically using a genetic algorithm. This 
results in a very easily reconfigured system, but its strength 
is also a weakness when faced with a complex domain: it is 
easily configured within certain bounds, but it cannot 
easily be more completely tailored for a complex domain. 
Nor can it easily accommodate significant add-on 
functionality; it primarily draws on a toolkit of standard 
techniques. 

Conclusions 

A reconfigurable intelligent scheduling framework using 
standard scheduling functions, combined with domain-
specific components and information, has the potential to 
allow quick and easy creation of a scheduler well tailored 

to a specific domain. The price to this is a reduction in 
computational efficiency; the exact impact depends on the 
configuration of the components. We would argue that for 
most domains, this tradeoff is a reasonable one. 
 We have shown that in its current form, a reconfigurable 
scheduling system can successfully be applied to a very 
complex real-world domain. The extensive requirements of 
this domain could be handled within the limits set by the 
current configuration boundaries, while making use of the 
robust temporal and resource-based scheduling methods 
which we had developed for previous domains. 
 Further work needs to be done in adjusting the 
component boundaries, making them sufficiently discrete 
for swapping in and out while maintaining sufficient 
transparency for efficient operation. It is possible that a 
finer granularity of component configuration could prove 
valuable. It would also be worthwhile to consider ways of 
taking such a configured scheduling system, and trimming 
it down for more efficient operation in a specific domain. 
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