
Applying an Intelligent Reconfigurable Scheduling System to

Large-Scale Production Scheduling

Annaka Kalton

Stottler Henke Associates, Inc.

951 Mariner’s Island Blvd, Suite 360

San Mateo, CA 94404

kalton@stottlerhenke.com

Abstract

Despite the invaluable role played by scheduling software in
a number of domains, the cost and expertise involved in
creating a system suited to each new area has restricted the
adoption of such tools. To make scheduling software
attainable by a broader audience, it must be possible to
create new scheduling systems quickly and easily. What is
needed is a framework which takes advantage of the large
degree of commonality among the scheduling processes
required by different domains, while still successfully
expressing their significant differences. We briefly describe
a framework which distills the various operations involved
in most scheduling problems into reconfigurable modules
which can be exchanged, substituted, adapted, and extended
to accommodate new domains. We then discuss how this
system was successfully applied to the large-scale
production scheduling involved in airplane assembly.

Introduction

Planning and scheduling software has the potential to
benefit a variety of domains and industries. Unfortunately,
although there are a variety of high-quality customized
scheduling systems available, off-the-shelf systems rarely
fulfill the scheduling needs of any one domain. This is, in
large part, because domain knowledge is crucial to taming
the intractable nature of scheduling problems in general.
 The result of this is that the main domains that can take
advantage of scheduling systems are either those that can
afford a full custom solution, or those that fall within the
narrow commercial off-the-shelf domain coverage (e.g. for
project planning). Even in the latter case, however, the
solution is often a poor fit, because the modeling tools are
often limited in their expressiveness, and the scheduling
process itself is generic.
 This problem is all the more frustrating because many
scheduling systems share a variety of common
functionality. We believe that the solution to this problem
is to create a standard scheduling framework, with parts of

Copyright © 2006, American Association for Artificial Intelligence

 (www.aaai.org). All rights reserved.

the scheduling process broken out into discrete
components that can easily be replaced and interchanged
for new domains. We have created such a framework in
Aurora, a configurable scheduling engine, and successfully
applied it to a number disparate domains, including orbiter
preparation scheduling and missile intercept assignment.
The domain discussed here - airplane assembly scheduling
- has a large number of complex resource requirements,
temporal constraints, and timing restrictions.
 We will begin by giving an overview of the
reconfigurable system and its components; we will then
discuss how the system was applied to the problem of
airplane assembly scheduling; finally, we will discuss our
conclusions and possible future directions for this research.

Reconfigurable Scheduling Framework

Aurora was designed to be a highly flexible and easily
customizable intelligent scheduling system. To achieve this
goal, we designed it to have a number of components that
could be plugged in and matched to gain varied results.
 The scheduling system permits arbitrary flexibility by
allowing a developer to specify what code libraries to use
for different parts of scheduling. Each of the pluggable
components must extend the corresponding general base
class that defines the entry-point methods. This allows the
objects that are integral to Aurora to interact with them
successfully. The libraries may make use of any of the
Aurora objects (such as activities and resources) that pass
through the interface. These objects provide support for
additional attribute caching, permitting domains to make
use of custom properties in the scheduling heuristics.
 The primary pluggable components include a
preprocessor; a scheduling queue prioritizer; the actual
scheduler, which usually applies several scheduling
methods; a conflict solution manager; and a postprocessor.
See Figure 1 for a more detailed breakdown of
configurable operations.
 Some of the pluggable components are independent
elements; others may depend on the existence of parallel
schedulable components in other parts of the scheduling
process.

Airplane Assembly Scheduling Domain

Extremely large-scale production scheduling, such as
airplane assembly scheduling, is a challenging real-world
scheduling problem that offers a number of interesting
features and considerations, some of which are discussed
below. We successfully reconfigured Aurora to satisfy
these special requirements without violating the general
scheduling solution framework; this customization is
discussed in the following section.

Extensive temporal constraints. The assembly plan for a
single airplane may have over two thousand jobs, and over
six thousand temporal constraints. Although the plane is
assembled in several sections, forming several especially
heavily constrained sub-networks, there are also a
significant number of constraints among these sections.
This would not be problematic except that they combine
with extensive resource requirements to form an extremely
heavily constrained problem definition.

Extensive resource requirements. Almost every job in
the assembly plan has at least one resource requirement;
and many have more than twenty. The required resources
often function at or near capacity.

Variable resource capacities. The personnel resources
and some equipment resources have a capacity that varies
over time. This variability is modeled as a nested variance
description: the patterned variability within a given time
period (e.g. 35 mechanics for 8 hours, 20 mechanics for 8
hours, and 7 mechanics for 8 hours; repeat); and different

patterns across different time periods (e.g. manpower
across shifts may be different in April than in March).

Workspace consumption. Many of the resources
constraining the schedule are in fact work zones, reflecting
the fact that most tasks must be performed in a specific
location, and only so many people can be at that location at
a time. However, in the course of airplane assembly, most
of these zones are effectively eliminated by jobs that install
hardware which prevents subsequent access to the area.
Such work zones are not true consumable resources; in
most cases the resource’s client job does not diminish the
resource’s capacity beyond that job’s duration. A zone
might be required by 100 jobs, the last two of which
eliminate it.

Interacting calendars. Rather than having a single work
calendar - either globally or at a job level - there are a
number of calendars that must interact dynamically in the
scheduling process, with the scheduler taking the
intersection of all applicable calendars to find a correct
result. An example of this would be a plane’s work
calendar being combined with a job’s and multiple
resource calendars to find the actual workable windows.

Soft scheduling. Some jobs may be split into multiple jobs
if it improves the schedule; other jobs may occur at the
same time as certain compatible jobs, even though usually
this would produce a conflict and invalid schedule. These
soft scheduling attributes help produce a shorter schedule
that is still workable and acceptable, but also add a degree
of challenge to finding that schedule quickly.

Analysis complexity. The scheduling problem itself is rich
and complicated. However, it is not sufficient for the
system to produce a feasible schedule; it must also produce
a comprehensible schedule. The scheduling team is
continually trying to improve the production plan’s
formulation to gain a plan that can be scheduled more
compactly. In order to do this, the scheduling team must
not only be able to extract a feasible schedule from the
system: they must also be able to look at the schedule and
gain an understanding of why it scheduled the way it did,
so that they can focus on those parts of the production plan
that could result in schedule cycle improvement if
streamlined.

Airplane Assembly Scheduling Customization

The greatest consideration in airplane assembly scheduling
is the scale of the problem, and the tangle of inter-related
constraints which make it extremely difficult to fix
conflicts. These are the fundamental driving factors for this
domain; other considerations add to the domain’s
complexity, but in and of themselves do not make the
scheduling difficult. Below we discuss how we addressed
each of the airplane assembly scheduling considerations
introduced above. Each section finishes with a cross-
reference indicating which stages in the scheduling process
(see Figure 1 for references) had to be modified to
accommodate the change.

Single Schedule Cycle

Schedule Element

Select Next Element

High-Level Schedule

Process

Initialize

Queue

Schedule Elements

Select Next

Element
Schedule

Element
Manage

Conflicts

3

Perform

Postprocessing

2

4

Perform

Preprocessing

1

Heuristic Q

Re-Sort
Pop Element

A

Preprocess

Element Find

Window
Select

Resources

B

Finalize

Selections
Postprocess

Element

Manage

Conflicts

C

v

i

ii

iii

iv

Figure 1. Aurora’s reconfigurable scheduling system

process breakdown. This shows a few of the configurable

decision points, and will be used for scheduling stage

cross-reference in the customization discussion.

Extensive constraints. The resource requirements make
conflicts likely, while the temporal constraints make it very
difficult to successfully resolve these conflicts. Rather than
attempting to fix these conflicts, we instead focused on
conflict-free scheduling and the scheduling order that
could result in such scheduling. By not trapping earlier
activities into restricted windows by scheduling later
activities first, we could avoid conflicts; subsequent work
focused on prioritization heuristics which tended to result
in shorter schedules. For example, scheduling jobs with a
large number of down-stream dependencies (not only
direct successors, but successors’ successors, etc.) tends to
result in a schedule with a shorter cycle time. Adding
resource requirement considerations to this analysis
improves results even more.
 Customizations focused on stage 1, for heuristic
initialization; and stages 2 and 3.A, for queue prioritization
and management.

Variable resource capacities. The challenge with variable
capacities lies in modeling them efficiently. In the
scheduling process itself, the variable capacities are no
different from having a number of activities already
scheduled, occupying certain patterns of usage within a
resource. We considered modeling the capacities in exactly
that way - using “dummy” activities - but concluded that
the number of objects required would be prohibitive.
Instead, we apply a capacity pattern (made up of nested
capacity routines) to the linked lists of time slots that
express a resource’s availability through time. Because the
resource knows what its capacity plan is, and it is easy to
find the routine for a given time window, the plan can be
applied on an as-needed basis, significantly improving
overall performance by minimizing the number of resource
time slots required. See Figure 2 for an example of a
schedule using variable capacities.
 Customizations focused on stage 3.B.iii, for incremental
capacity plan application on an as-needed basis.

Workspace consumption. Because most work-zone client
jobs do not consume them (the work takes place and the
person leaves, freeing the zone for another task), modeling
the zones as true consumable resources did not give the
desired flexibility. Nor did the application of temporal
constraints from jobs to resources to dictate resource end
time, because in some cases a job only consumed part of
the zone. To accurately reflect the desired flexibility we
used a new type of constraint - a consumption constraint -
which would remove the associated quantity from the
resource’s capacity once the job was scheduled. We also
augmented the job prioritization to guarantee that all work
making use of the zone would be complete before it was
fully consumed, preventing unnecessary conflict
resolution.
 Customizations focused on stage 3.A, for zone-
availability priority maintenance; and stage 3.B.v, for
consumption constraints propagation to eliminate the
associated resource capacity.

Interacting calendars. Intersecting calendars is not a
fundamentally difficult problem; the challenge lies in the

sheer number of elements involved. This difficulty was
ameliorated by the fact that there are generally fewer than
ten calendars in use overall; so rather than intersecting
each job/plane/resource set combination, we could cache
each calendar combination for later lookup and use. In
most cases, one of two or three composite calendars was
appropriate, with a few exception cases making use of a
less standard composite. The compilation and cross-
referencing could then be done on an as-needed basis and
cached for future reference; in general each such analysis
only had to be done once for a given plan, unless the
calendar definitions changed.
 Customizations focused on stage 3.B.ii, for calendar
retrieval and (if necessary) compilation.

Soft scheduling. The primary challenge of the soft
scheduling is the question of whether to apply it. Splitting
a job into two pieces, for example, is certainly desirable if
it buys you six hours in overall flow time. What if it buys
you an hour? Half an hour? Ten minutes? Because it is not
always worth the implicit cost necessary to take advantage
of the soft scheduling options, we folded the analysis
involved into the single-step post-processing (stage 3.B.v):
methods called just after a given element is scheduled,
before the next is scheduled. This allows the methods to
alter the decisions made in the course of scheduling, but
also take advantage of the knowledge gained to make more
intelligent decisions.
 Customizations focused on stage 3.B.v, for considering
the utility of softening the schedule selections made in
earlier 3.B stages.

Analysis complexity. Providing transparency to complex
scheduling decisions, especially in a schedule of such
scale, is a great challenge. We focused on the more
straightforward question of why a given element scheduled
where it did: what temporal constraints impacted the
possible time window and how; did resource availability
affect the selected window; and if so, on what other job

Figure 2. The histogram display in Aurora, showing

details for a specific time slice and reflecting a variable

per-shift capacity for the mechanics.

was this job waiting. Based on this information the system
produces a layered explanation reflecting the nested
possible time windows: what elements restricted a given
window, and why. It also maintains direct links to the
elements that determined the final decisions, so that from
the GUI the user can easily navigate along a string of inter-
related elements to better understand the root cause of a
cascading series of scheduling decisions. The GUI also
provides a number of drill-down displays and reports,
providing a greater degree of transparency to the actual
scheduling results. This information allows a savvy user to
gain an understanding of both the broad results and
specific decisions, providing the tools he needs to
manipulate the assembly plan definition to improve the
overall schedule cycle. See Figure 2 for an example of a
high-level display with drill-down exploration support.
 Customization focused on stages 3.B.i, 3.B.iv, and
3.B.v, for caching information about constraint
propagation impact and actual scheduling decisions.

Related Work

Previous research considering the design and
implementation of reconfigurable scheduling systems has
built on concepts initially explored in the area of reusable
domain analysis [Ferré and Vegas 99, Arango 94] in order
to take advantage the similarities between scheduling
problems. Most notably, Carnegie Mellon’s Intelligent
Coordination and Logistics Laboratory has developed the
OZONE (O3, or, Object Oriented Opis) scheduling
framework [Smith et al 96 and 97]. OZONE, like Aurora,
provides the basis of scheduling solution through a
hierarchical model of components to be extended and
evolved by end-developers. [Becker 98] describes the
validation of the OZONE concept through its application to
diverse set of real-world problems, such as transportation
logistics and resource constrained project scheduling.
 A less flexible but more easily configured system was
explored in relation to genetic algorithms [Montana 01].
This approach has the advantage of defining schedule
properties using a straightforward set of meta data, with
much of the more refined optimization configuration being
performed automatically using a genetic algorithm. This
results in a very easily reconfigured system, but its strength
is also a weakness when faced with a complex domain: it is
easily configured within certain bounds, but it cannot
easily be more completely tailored for a complex domain.
Nor can it easily accommodate significant add-on
functionality; it primarily draws on a toolkit of standard
techniques.

Conclusions

A reconfigurable intelligent scheduling framework using
standard scheduling functions, combined with domain-
specific components and information, has the potential to
allow quick and easy creation of a scheduler well tailored

to a specific domain. The price to this is a reduction in
computational efficiency; the exact impact depends on the
configuration of the components. We would argue that for
most domains, this tradeoff is a reasonable one.
 We have shown that in its current form, a reconfigurable
scheduling system can successfully be applied to a very
complex real-world domain. The extensive requirements of
this domain could be handled within the limits set by the
current configuration boundaries, while making use of the
robust temporal and resource-based scheduling methods
which we had developed for previous domains.
 Further work needs to be done in adjusting the
component boundaries, making them sufficiently discrete
for swapping in and out while maintaining sufficient
transparency for efficient operation. It is possible that a
finer granularity of component configuration could prove
valuable. It would also be worthwhile to consider ways of
taking such a configured scheduling system, and trimming
it down for more efficient operation in a specific domain.

References

Arango, G., 1994. Software Reusability, Ch 2. Domain

analysis methods, pages 17-49. Workshops M.E.

Horwood, London.

Becker, M.A., 1998. “Reconfigurable Architectures for
Mixed-Initiative Planning and Scheduling,” PhD Thesis,
Robotics Institute and Graduate School of Industrial
Administration, Carnegie Mellon university, Pittsburgh,
PA.

Ferré, X. and Vegas, S. 1999. An Evaluation of Domain
Analysis Methods. Proceedingss of 4th International
Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design.

Montana, David, 2001. A Reconfigurable Optimizing
Scheduler. Proceedingss of the Genetic and Evolutionary
Computation Conference (GECCO).

Smith, S.F., O. Lassila & M. Becker. 1996. Configurable,
Mixed-Initiative Systems for Planning and Scheduling. In:
Tate, A. (Ed.). Advanced Planning Technology. Menlo
Park, CA: AAAI Press.

Smith, S.F. & M. Becker. 1997. An Ontology for
Constructing Scheduling Systems. Working Notes of 1997
AAAI Symposium on Ontological Engineering. Stanford,
CA: AAAI Press.

