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ABSTRACT 

We present a novel approach to predictive situation awareness that leverages human 

insight to enhance the forecasting abilities of Fusion levels 2 and 3.  Existent 

technologies fail to support predictive and impact modeling under realistic conditions, 

particularly when there exist few historic exemplars on which to base inferences or when 

full awareness of the situation includes unobservable elements.  We report on our 

ongoing efforts to develop FutureFusion, a collaborative system that builds predictive 

awareness and enables futurists to visualize paths to possible futures and formulate 

predictions on the ultimate outcome of scenarios of interest.  FutureFusion’s human 

interpretable knowledge representation is unique in its ability to capture qualitative 

descriptions of possible futures and quantify them to build computational models.  

Further, FutureFusion captures both popular consensus as well as high-risk outliers, 

thereby reducing the potential for surprise.  Finally, by efficiently diversifying the 

modeling process across a heterogeneous and distributed community of experts, this 

approach avoids the common pitfalls of more traditional modeling approaches.  

FutureFusion helps to cast light on blindspots, mitigate human biases, and maintain a 

holistic, up-to-date predictive and impact awareness. 
 

1 INTRODUCTION 

Advanced situation awareness (SA) methods can improve our ability to avoid crises and seize opportunities.  

Fusion levels 2 (situation assessment) and 3 (impact assessment) [20] incorporate information from diverse sources 

to assess the current state of the world and reach into the unknown when considering the impact of actions on an 

environment.  However, there are many challenges that inhibit our ability to capture full awareness in uncertain 

environments, in particular situations that involve forecasting the effects of actions on an environment or predicting 

possible futures.  The first bottleneck is to capture sufficiently rich information to develop models.  Relying on 

autonomous systems such as sensor networks alone will restrict collected information to historic or observable 

signals and events.  While this is useful for capturing a snapshot of the world or for considering the patterns that 

have occurred in the past, autonomous systems have difficulty developing insights about situations that have never 

been observed.  Impact assessment requires the ability to extract and represent the causal relationships between 

events and predictive anticipation requires insight into possibilities outside the realm of collected artifacts.   

We can diversify and expand our network of information sources to capture a greater perspective on a situation.  

Leveraging insight from human experts and collected human intelligence (HUMINT) will increase the relevance of 

predictive models immensely.  However, diversity will also increase the amount of conflict, redundancy and noise.  

In addition, human nature introduces many other challenges that need to be overcome.  First, combining human 
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contributions is complicated by the vagaries of natural language and the qualitative nature of human judgments.  

Humans also base their intuition on experience and often have difficulty being objective in the face of uncertainty.  

If those contributing knowledge have insufficient coverage of all factors involved, then models will be biased and 

only capture a partial awareness of the situation and its implications.  A solution that leverages both human insight 

and the computer’s ability to capture and sift through large amounts of data will enable a richer perspective from 

which to build a sufficient awareness to enable decision-making.   

FutureFusion exploits the conflicts that arise from a diversified knowledge base to develop an awareness of 

alternative futures– including those that are more likely and those that represent a higher risk to a system’s 

wellbeing.  Our approach builds predictive awareness models by combining the insights of many experts.  The first 

step is to provide an intuitive interface that enables individuals to describe the issues at hand and relationships 

between them in a natural way.  The second step is to form computational models from these insights that provide 

assessments on the likelihood of events and the potential impact of changes in an environment.  Our approach 

transforms the qualitative judgments of many individuals into a quantitative assessment of a situation and its 

implications.  We extend the concept of scenario maps, introduced by [2] as an approach to help decision-makers 

visualize the driving forces that lead a situation to multiple alternative futures.  Scenario maps utilize natural 

language in a graphical representation to illustrate how major clusters of activity are linked to one another and what 

their important consequences are.  In their original form scenario maps are typically theoretical but very useful as a 

visualization and problem-solving tool.  Our executable scenario maps extend these capabilities to form 

mathematically sound models using Bayesian representation and reasoning. 

This paper is organized as follows.  We first discuss technologies that inspire FutureFusion in Section 2.  Then 

we discuss our approach in Section 1, beginning with our unique approach to eliciting predictive information to 

build awareness.  Section 3.1.1 describes our scenario maps for situation awareness and 3.1.2 highlights our method 

for eliciting probabilistic information from humans.  In Section 3.2 we discuss our approach to turning qualitative 

input into quantifiable computational models.  In Section 4, we highlight the discoveries we have made with limited 

user testing and conclude with a summary of our findings in our on-going research in Section 5. 

2 RELATED WORK 

FutureFusion takes inspiration from many different research fields, including data fusion, scenario 

development, collaborative knowledge elicitation, and Bayesian belief aggregation.  We highlight these technologies 

below. 

2.1 Multi-source Fusion 

Existing data fusion systems typically merge output from sensor networks and other input streams (such as 

SIGINT) to develop a picture of an environment and help assess the situation [18], [14].  Several levels of 

abstraction iteratively build from low-level numerical input to high-level assessment about the behavior of entities in 

the environment and the impact of their actions.  Human intelligence (HUMINT) fusion is a relatively nascent 

aspect of this technology as it is more difficult to integrate natural language due to semantic vagaries and the higher 

level of abstraction typically associated with human intelligence.   

Wright and Laskey [18] use a Bayesian extension they developed for merging multiple sources that considers 

the validity of the source, incorporating credibility models containing information about evidence for a belief and the 

quality of the source into their Bayesian representation.  While our approach also utilizes a Bayesian-like model, we 

focus on the challenges of eliciting and building models from human intelligence.  We relax our reliance on 

Bayesian mathematics by making a number of independence assumptions, allowing users to build larger, more 

realistic models that incorporate varying beliefs.  Similar to their representation of evidence, we also enable 

contributors to submit their sources as evidence, or to supply other reasoning behind their contributions, but we 

leave this out of the models for simplicity.  Users instead can read this information and provide feedback on their 

agreement with another user’s contribution.  While Laskey’s approach utilizes extensive modeling to determine the 

competence of an agent, we utilize the power of democratic collaboration to validate the accuracy of input.  The 

credibility models rely more on building the evidence for and consensus of a particular belief versus enabling 

multiple alternative futures to emerge. 

General Dynamics developed a system, called the Human Processing Subsystem, for the Air Force Research 

Laboratory [14].  This system builds awareness about targets by extracting information about the entities involved 

and the physical characteristics of an environment from multiple structured and unstructured text-based sources.  

Their approach uses pattern matching and natural language techniques to extract specific types of information from 



a document.  Their system is intended to be used in a forward/backward chaining reasoning system that makes high-

level inference from information extracted based on information received and queries made by operators.  This 

system and other information extraction approaches represent a complementary approach to our human-built models   

2.2 Scenario Development 

Most strategy and scenario development approaches are entirely human-driven and do not incorporate a 

computer-based system.  FutureFusion is the first to attempt to utilize this story-driven approach to build 

computational models.  Peter Schwarz, the cofounder of the Global Business Network, has developed an approach to 

scenario building that leverages human insight to extract indications of inevitable surprises [15], [16].  His approach 

involves enumerating key driving forces and determining what their ultimate effects are on an organization or 

environment.  The result is a set of alternative futures.  Eden and Ackermann [2] utilize a similar approach to build 

strategy based on visualizing scenarios as graphical maps, called concept or scenario maps.   

2.3 Collaborative Knowledge Elicitation 

A large body of research and development exists related to collaborative knowledge elicitation and sharing.  In 

particular, Collaborative Innovation Networks (or CoINs) [3] have emerged as a highly effective method to connect 

like-minded individuals to cooperate on knowledge and system development.  CoINs follow the philosophy that the 

power of the people is greater than a small, closed group of “experts”.  Two excellent artifacts of CoINs are Linux 

and Wikipedia.  Over time, the quality and richness of both of these tools has increased considerably because their 

popularity encourages many knowledgeable individuals to contribute, and consensus helps to remove spurious 

contributions and fix inaccuracies.  However, enforcing consensus also can have some negative side effects.  In 

some cases, particularly when dealing with future unknowns, the events that present the greatest risk often arise as 

outliers to the more popular beliefs.   

Peak-a-boom, created by Carnegie Mellon University [17], is a web-based tool that integrates many 

contributions to build knowledge systems using free human labor that would otherwise be too time- and cost-

intensive.  Peak-a-boom builds a vision database by incorporating tags submitted by users on image content.  A 

unique aspect of their approach is that they attempt to encourage more contribution by turning their tool into a game.  

While users may find the game fun to use, they do not realize that they are actually helping to build a rich body of 

knowledge.  Encouraging contributions is a very difficult task in collaborative knowledge systems [19].  People 

need to feel like they are getting a return on investment when they commit their own knowledge to a system shared 

by others.  This can be through the appearance of monetary gain, power and popularity, or simply “fun.”  

Google has taken on a market-based approach to prediction.  They have conducted an internal experiment using 

bets placed on the likelihood of some event [1].  They have made several discoveries relating to the social aspect of 

collaboration; for example, employees who work closely together often make similar predictions.  Google’s 

approach focuses only on the prediction of single events, not on developing complete models integrating causal 

relationships between entities and events.  Therefore, it is significantly simpler than FutureFusion but is interesting 

as a study in social networks and market-based prediction. 

2.4 Bayesian belief aggregation 

Bayesian models are often used to represent situation awareness in fusion systems [11].  Our particular 

approach involves integrating beliefs by many experts into a graphic model based on Bayesian reasoning.  Bayesian 

belief aggregation [9] involves combining probabilistic beliefs of a group of individuals to generate a consensus 

belief.  It is used to calculate a probability distribution from the joint probability distributions of n agents.  The 

function that combines beliefs is called an opinion pool function.  The most common opinion pool functions are 

LinOP and LogOP.  LinOP (Figure 1) is a weighted mean of the contributor’s probabilities.  LogOP (Figure 2) is a 

weighted geometric mean.  In the figures, Pri(ω) represents each contributor’s opinion of probability and ai 

represents the weight of the opinion, such that all weights sum to 1.0.  LogOP has been found to more accurately 

represent conditional relationships as LinOP destroys some of the independence assumptions inherent in Bayesian 

networks [10]. 

 

Figure 1: LinOP opinion pool function. 

 

Figure 2: LogOP opinion pool function. 



3 APPROACH 

3.1 Leveraging human insight for holistic predictive SA 

3.1.1 Scenario maps for situation awareness 

FutureFusion was developed for an Air Force Phase II SBIR program entitled Effective Behavioral 

Modeling and Prediction Even When Few Exemplars are Available.  Our approach is motivated by the 

inability of automated systems to anticipate events that pose a high risk to an organization.  The nature of 

surprises implies that few observable indicators exist for automated systems to capture.  In contrast, the 

same insight that enables humans to adapt to new situations allows us to imagine extensive what-if 

scenarios from a single event.  To overcome the limitations of purely automated approaches, we leverage 

human insight to brainstorm and refine predictive awareness models.  We utilize the wisdom of the crowd 

to expand awareness and overcome any biases as well as to temper overactive imaginations and focus on 

issues of concern.  This iterative process of divergence and convergence causes the likely alternative 

futures to come to the forefront but also allows less plausible, but high-risk, outliers to remain in our 

awareness.   

FutureFusion incorporates concepts from cutting-edge collaborative knowledge systems such as 

Wikipedia and Yahoo! Answers with strong foundations in both human-centered and mathematical 

predictive modeling approaches.  We take inspiration from the field of scenario development [15], [2] in 

which futurists generate written and sometimes graphical scenarios that enumerate key driving forces and 

their effects on an outcome of interest.  The result is a set of alternative futures often graphically 

represented by a scenario map. Figure 3 shows a scenario map representing a hypothetical situation 

following the 2005 Indian Ocean tsunami.  This approach is more natural for human decision makers to 

undertake than mathematical predictive approaches such as Bayesian modeling [4] because mathematical 

models require modelers to understand the more complicated implications of relationships and also require 

quantitative estimates of likelihood for each combination of influential variables.  We use information 

retrieval techniques to enable reuse and avoid information redundancy.   

 

Figure 3: Scenario map showing how the Asian tsunami could have led to human trafficking. 

The intuitive FutureFusion interface allows users to build scenario maps containing events and the 

influential relationships between them.  Our scenario maps are composed of two main components: 

predictions and influences.  Predictions have an associated likelihood that FutureFusion computes from 

user input and influences on the prediction.  While “prediction” may imply only a future unknown, we also 

include facts and historical events as predictions since they are open to interpretation by different observers 

and experts.  Influences represent the relationships between predictions.  The relationships will typically be 

causal, temporal, or otherwise define a dependency between two entities.  An influence has a direction and 

strength associated with it that quantifies the impact one entity has on another.  The impact can be positive 

(increases likelihood) or negative (decreases likelihood).   
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Figure 4 shows the web-based FutureFusion interface displaying details of the prediction, reduced 

vulnerability of coalition forces.  The Influence Panel (bottom half of figure) lists the prediction’s incoming 

and outgoing influences separately.  Incoming relationships (in the white area of the influences tab) show 

other predictions that change the likelihood of the current prediction.  Outgoing relationships (in the gray 

area) list any predictions that the current prediction influences.  The strength of each relationship is 

represented as a verbal description (e.g., “Slightly increases chances”) to be consistent with the qualitative 

nature of human judgment. Figure 5 shows the graphic representation of the scenario map.  We have found 

that users prefer to edit scenario maps utilizing the localized, textual interface shown in Figure 4, while the 

graph shown in Figure 5 is more conducive to visualization.  The textual interface enables users to focus on 

local relationships without becoming overwhelmed by the size of the model, while the graphic interface 

shows holistic system behavior. 

 

Figure 4: The FutureFusion interface showing a prediction and its influences. 

 

Figure 5: Segment of graph generated from the predictions and influences in Figure 4. 

A scenario map is a connected network of predictions held together by their influences.  Users can add 

new predictions to a scenario map by adding them as an influence or they can create a new scenario map by 

making a new prediction with no initial influences.  When predictions in unconnected scenario maps are 

joined with an influence, they form larger scenario maps that represent the interactions between smaller 

systems, also known as systems of systems.  To help encourage merging scenario map fragments to build 

larger collaborative representations, we use information retrieval (search) tools to find existing predictions 

related to those currently being viewed.  FutureFusion displays these related predictions on the left side of 

the screen in Figure 4, which can easily be added as incoming or outgoing influences.  Similar retrieval 

techniques are used to help avoid information redundancy, which could easily become a problem in a 

multi-user system.  FutureFusion will flag newly submitted predictions that seem to match existing ones. 

Figure 6 shows the dialog that notifies the user if a similar prediction already exists.   



 

Figure 6: Dialog indicating that a similar prediction already exists. 

3.1.2 Eliciting qualitative estimates of likelihood 

Our goal is to reduce the cognitive load on human contributors and enable them to supply as few 

probability estimates as possible, while still maintaining rich quality of information.  The elicitation 

approach used in FutureFusion is informed by research that shows that non-mathematically oriented people 

tend to become intimidated by requests for probabilities and are more comfortable using qualitative 

terminology that allows them to provide analysis in words using relative terms [12], [5].  We can also 

reduce the number of value estimations needed from users to infer likelihood by using the independence 

assumption [6] that considers each individual influence’s effect on a prediction independent of all other 

influences.  This is in contrast to full Bayesian models that require a probability estimate for each possible 

combination of influences.  In the example in Figure 4 and Figure 5, the five incoming influences would 

require 2
5
 = 32 estimates (exponential on the number of incoming influences) for a Bayesian conditional 

probability table.  In reality, many influences are independent, for example, smaller convoys utilized is 

unrelated to the increased availability of Q36 radar.  Using independence assumptions, we reduce the 

number of estimates in our example to 5+1= 6 (linear on the number of incoming influences).   

FutureFusion users supply feedback on the a priori prediction likelihood and the strength of each 

influence.  A priori likelihood represents the probability estimate of a prediction before a new situation is 

considered.  In this case, the new situation includes the impact of any incoming influences.  Thus, a priori 

likelihood represents the probability that the prediction occurs without knowledge of the known influences, 

or alternatively, the probability of unknown influences on a prediction.  This distinction points to another 

limitation of Bayesian models.  Typical Bayesian networks only represent known variables in a limited 

world.  However, in reality it is very difficult to capture all variables that bring about an effect.  For 

example, in Figure 4, we could easily be missing other influences that increase or decrease the likelihood of 

reduced vulnerability of coalition forces; however, users are only able to enumerate influences that they are 

aware of.  Eliciting a priori probability allows users to qualify their uncertainty about the causes of a 

prediction, enabling a richer, more realistic model. 

Users also supply their opinion on the direction and strength of each influence.  This approach is based 

on Causal Strength (CAST) logic [13].These influences combine with the a priori likelihood to form the 

prediction likelihood given the current situation.  An influence can either be implicative, meaning that it 

implies or causes the prediction, or it can prohibitive, meaning that it reduces the chances of a prediction 

occurring.  The strength of the influence indicates how much it increases or decreases the likelihood of a 

prediction.  In Bayesian logic, one would supply a conditional probability indicating the likelihood of one 

event given another, or in mathematical notation; )|( xyp  meaning the probability that y is true given that 

x is true.  Causal strength is roughly proportional to: )()|( ypxyp , where )(yp is the a priori likelihood 

of a prediction.  Again, we aim to reduce the cognitive load on non-mathematically inclined users, therefore 

we enable them to think in more natural qualitative terms such as “increases the probability” instead of 

requiring conditional probabilities.   



FutureFusion is a collaborative application and allows all users with appropriate permissions to 

provide feedback on any prediction.  Based on the combined feedback on a priori likelihood and influences, 

FutureFusion computes the ultimate likelihood of a prediction (indicated below the prediction text in 

Figure 4 as “Based on community feedback, this prediction is Certain (91%)”).   

3.2 Inferring quantitative executable scenario maps  

We use the qualitative feedback elicited from users to make our scenario maps executable by enabling 

them to output quantified probability estimates for predictions.  Instead of eliciting continuous, 

mathematical values, we allow users to select from a set of discrete values that represent increments 

between the minimum and maximum values (in the case of probability; between 0.0 and 1.0).  Rarely will 

even highly educated experts be able to quantify likelihood within a few percentage points.  Based on 

experimentation and analysis, we map the discrete values to appropriate continuous values.  These values 

can be configured for special situations that require more refinement, for example, when the likelihood of 

most events of interest is very low. 

As stated previously, we currently use a form of causal strength logic [13] to compute the likelihood of 

a prediction based on its a priori likelihood and the likelihood and strengths of its influences.  The first step 

is to find the a priori likelihood and strength for each influence based on the feedback from all users.  

Merging probability estimates is a key aspect of belief aggregation research [9] described in Section 2.4.  

We initially are using the simpler LinOp method, which is essentially a weighted average.  However as we 

refine our computation we may utilize the more structurally sound LogOp formula.  While currently we 

weight each contributor equally, it would be a trivial extension to weight contributors by experience or 

correctness of contributions.  The second step is to compute the ultimate likelihood of a prediction from the 

aggregated a priori likelihood and influence strengths.  Figure 7 shows the algorithm used to 

compute )(' XP , or the posterior probability of a prediction X.  Each influence on X, ),( XYI k , where 

kY is the causal prediction in X’s k
th

 incoming influence, moves the probability of X closer to 1.0 (or 

certain) if it is positive, or closer to 0.0 (or impossible) if it is negative.   

 

Figure 7: Algorithm used to calculate the probability of a prediction given its a priori probability and 

probability and strength of its influences. 

Most scenario maps will be composed of many influential relationships chained together.  The ultimate 

likelihood of a prediction is the result of propagating the likelihood up from its root causes, a process 

known as inference in graphical models.  FutureFusion utilizes Judea Pearl’s well-known belief 

propagation inference algorithm [8].  This algorithm uses the concept of message passing in which 

predictions send their updated probability to their effects, as opposed to recursively requesting probability 

from their causes.  Pearl’s belief propagation algorithm is found to be very efficient as well as elegant.  Our 

dynamic adaptation of the algorithm propagates changes in the model only to those predictions effected by 

the change, reducing computational load over re-computing the whole model.  The final benefit of the 

belief propagation algorithm is that it works even on networks that contain loops (instances where a 

prediction is a cause of itself) [7].  This has significant positive implications for FutureFusion.  While 



typical causal models are required to be acyclic, feedback loops (cycles) occur frequently in real-world 

situations.  This puts an unrealistic limitation on simulations created with most causal representations.  

However, because we are using loopy belief propagation in our FutureFusion system, we have successfully 

represented and inferred models containing feedback loops. 

Since we are making several simplifying assumptions that approximate the approach of more 

knowledge- and computation-intensive Bayesian reasoning, we have not made any claims as to the 

accuracy of our approach.  Our initial goal was to assess the validity of our process and elicitation 

techniques.  Since we are collecting human supplied estimates of likelihood on typically abstract concepts 

or events that may or may not occur in the long-term future, it is difficult to judge accuracy.  However, we 

aim to integrate observations from sensor networks and other external sources that will provide more 

concrete likelihoods and help validate results.  Therefore, our continued goal is to reduce the computational 

error between our approach and formal Bayesian methods.  We are working on methods to retain the 

benefits of causal strength logic (i.e., easier comprehension by users) while improving its posterior 

probability estimate.  We are currently investigating a technique that derives conditional probability tables 

from causal strength and utilizes the conditional independence assumption from the Naïve Bayes classifier 

[6] to compute probability.  In addition, our research in collecting human intelligence will enable us to 

determine where refinement will promote a more accurate computational model. 

4 Discoveries 

Our primary goal in developing FutureFusion has been to eliminate the bottleneck in collecting and 

integrating insights to build an awareness of potential futures.  Autonomous extraction techniques are 

useful for mining existing information and sensor networks improve our ability to capture real-time 

observations; however only human insight can provide a vision of futures that have minimal observable 

evidence.  On the other hand, existing modeling techniques for capturing human knowledge are tedious and 

too opaque for typical users.  FutureFusion has opened predictive modeling to enable users from diverse 

backgrounds to collaborate on building a vision of the future.  We made several key discoveries in our 

research and during our focused user testing.   

In our initial research and development cycle, we found that providing simple and general model 

components is more effective than attempting to represent specific types of predictive information.  We 

initially planned to provide two types of “nodes” in our scenario maps: events and evidence.  However, we 

often found that it was difficult to distinguish between the two, since sometimes evidence for an event is 

itself an event.  In addition, evidence is often so tightly correlated with an event that it is difficult to 

separate them for modeling purposes.  Therefore, we provide only one type of node, called a prediction, 

that can be used to represent many types of information with temporal, physical, or conceptual 

characteristics.  Instead of making evidence explicit in the models, we provide an interface associated with 

each prediction for users to submit comments and external evidence to validate their predictions. 

We ran two focused tests with groups of 4-5 users working concurrently on a common topic.  Our goal 

was to validate our elicitation approach and its ability to encourage user contributions.  We found that in 

this focused, concurrent environment, users became engrossed in the process of submitting predictions and 

providing feedback.  Our dynamic updates that immediately display new contributions to other users helped 

to increase community awareness and enabled users to play off each other’s submissions.  We also found 

that FutureFusion’s computational representation helped discover discrepancies between user expectation 

of likelihood and the developed models.  For example, a prediction’s a priori expectation sometimes varied 

drastically from the combined effect of its influences.  This occurred with the prediction “Microsoft Zune 

market share outpaces iPod by 2010.” While the a priori likelihood was quite low, users tended to create 

positive influences on the prediction, increasing the overall likelihood of an event beyond expectations.  

This may have been due in part to biases that caused users to submit influences that would increase 

Microsoft’s market share because either they were playing the devil’s advocate or they wanted the iPod to 

have some healthy competition.  In any case, this example demonstrates the difficulty of capturing all 

influences on a prediction.  As a result, we have adjusted the a priori likelihood to explicitly represent 

belief in the unknown influences on an event.  We are also improving our probabilistic inference algorithm 

to more accurately represent the combined effect of influences on a priori likelihood.  These enhancements 

will increase the realism of our approach over traditional Bayesian models that typically only represent a 

limited view of the world, yet make assumptions of completeness.  In a real world situation there will be 

many variables that cannot be made explicit. 



We also released FutureFusion to a small group of web users that used the system on their own time, 

without a community of concurrent users.  In these cases, users tended to submit their own scenario map 

fragments that did not connect to other user’s contributions.  We concluded that a greater awareness of the 

community is needed to encourage non-concurrent users to share and provide feedback on each other’s 

contributions.  We are currently integrating new components that display community feedback to help 

increase awareness.  This will help pull users into a more interactive and engrossing discussion of 

possibilities.  While we would like to see improvements with more casual individual users, we were 

pleased with the results of our focused group tests as these environments more closely match our intended 

user groups in such applications as strategic planning, counter-terrorism and crisis management. 

5 Conclusions 

In this paper, we have described the progress we have made in developing the FutureFusion system – a 

collaborative environment for building predictive awareness.  The evaluations conducted to date have 

demonstrated the value of this unique knowledge elicitation and predictive modeling approach.  

FutureFusion provides an intuitive and rapid story-based approach to collecting knowledge from 

potentially large and diverse sets of contributors.  By diversifying the modeling effort across a broader 

community of experts, FutureFusion is able to mitigate the threats posed by human bias and blindspots.  

Further, by supporting synchronous and asynchronous collaboration (without the need for a facilitator), this 

approach to predictive knowledge modeling encourages the continuous revision of predictive models as 

events occur and new insights arise.  Such ‘living’ models offer obvious advantages over the static models 

that typically result from the more costly war-room style modeling approaches.   
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